
ANL.6447 ANL-6447

argonne Bational laboratorg
GAMMA I

A GENERAL THEOREM-PROVING
PROGRAM FOR THE IBM 704

by

John Alan Robinson

LEGAL NOTICE

This report was prepared as an account of Government sponsored
work. Neither the United States, nor the Commission, nor any
person acting on behalf of the Commission:

A. Makes any warranty, or representation, expressed or implied,
with respect to the accuracy, completeness, or usefulness
of the information contained in this report, or that the use
of any information, apparatus, method, or process disclosed
in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for
damages resulting from the use of any information, apparatus,
method, or process disclosed in this report.

As used m the above, "person acting on behalf of the Commission"
includes any employee or contractor of the Commission, or employee
of such contractor, to the extent that such employee or contractor
of the Commission, or employee of such contractor prepares, dis­
seminates, or provides access to. any information pursuant to his
employment or contract with the Commission, or his employment with
such contractor.

ANL-6447
Mathematics and Computers
(TID-4500, 16th Ed.,

Amended)
AEC Research and

Development Report

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, Illinois

GAMMA I

A GENERAL THEOREM-PROVING PROGRAM
FOR THE IBM 704

by

John Alan Robinson

Applied Mathematics Division

November 1961

Operated by The University of Chicago
under

Contract W-31-109-eng-38

T A B L E O F C O N T E N T S

P a g e

INTRODUCTION 3

C H A P T E R I. M A T H E M A T I C A L LOGIC 4

1. I n t r o d u c t i o n . The G e n e r a l Role of M o d e r n Logic 4

2. P r e d i c a t e C a l c u l i of F i r s t O r d e r 5
3. I n t e r p r e t a t i o n s . Va l id i ty , Sa t i s f i ab i l i t y , C o n s e q u e n c e . . 10
4. Deduc t ion ; P roof ; T h e o r e m s ; The D e c i s i o n P r o b l e m . . . 12

C H A P T E R II. T H E P R O C E D U R E H 15

1. P r e n e x Conjunc t ive N o r m a l F o r m . The P r o c e d u r e H . . 15
2. The T r u t h F u n c t i o n a l Method of Dav i s and P u t n a m 16

CHAPTER III. THE PROGRAM G A M M A I 19

1. The l anguage u s e d by GAMMA I 19
2. A t o m i c s e n t e n c e s and p r e d i c a t e s and n e g a t i o n s t h e r e o f :

l i t e r a l s 19
3. D i s j u n c t i o n s of l i t e r a l s 20
4. The Quan t i f i e r P r e f i x 21
5. The Input to GAMMA 1 22
6. GAMMA I i t se l f 24

C H A P T E R IV. SHORTCOMINGS O F GAMMA I. GAMMA II 28

A P P E N D I X . T H E SYMBOLIC F O R T R A N P R O G R A M GAMMA I . . . 31

1. Anno ta t ed g l o s s a r y of F O R T R A N s y m b o l s o c c u r r i n g

in GAMMA I 31
2. L i s t i n g of GAMMA I F O R T R A N s y m b o l i c p r o g r a m ,

with e x p l a n a t o r y c o m m e n t s 35

GAMMA I
A GENERAL THEOREM-PROVING PROGRAM

FOR THE IBM 704

by

John Alan Robinson

INTRODUCTION

GAMMA I is a FORTRAN-compiled program for the IBM 704
Electronic Data-Process ing Machine. It embodies a certain general , uni­
form procedure H of mathematical logic for seeking out a proof of any
theorem within any mathematical theory which is given in formal axiomatic
form.

The procedure H is theoretically complete. Using it, one will
always discover a proof for a theorem if there is one to be discovered.
However, as a pract ical instrument, the procedure H has severe l imita­
tions; in most cases of strong mathematical interest it calls for the execu­
tion of more steps than can be car r ied out in any reasonable time by the
fastest machines ever likely to be available. The actual capability of
GAMMA I is therefore no greater than these pract ical limitations inherent
in the procedure H will allow. Nevertheless, GAMMA I is remarkably
effective in a wide class of cases , including, for example, the modern
algebraic theory of lattice s t ruc tures .

Plans are afoot for GAMMA II, a program which will embody other
theoret ical procedures over and above the procedure H, and which will
possess a capability much greater than that of GAMMA I. These plans
are discussed in the sequel.

Pr ior to a detailed description of GAMMA I itself, an extended
discussion is provided of the underlying method, and of the necessa ry
background of mathematical logic. No knowledge of this field is presup­
posed. In the subsequent discussion of the computer program, however,
it is assumed that the reader is reasonably well acquainted with IBM 704
programming, and in par t icular with the FORTRAN symbolic p rogram­
ming system.

GAMMA I was written at the Argonne National Laboratory for the
Applied Mathematics Division in the summer of 1961. The work was much
facilitated by the active and helpful cooperation of George A. Robinson, J r . ,
and Herber t L. Gray, both of the Applied Mathematics Division.

C H A P T E R I. M A T H E M A T I C A L LOGIC

1- I n t r o d u c t i o n . T h e G e n e r a l Role of M o d e r n Logic •

T h e d i s c o u r s e of m a t h e m a t i c i a n s , when they a r e giving p r o o f s and
s t a t i n g r e s u l t s , i s c a r r i e d on in one of the n a t u r a l l a n g u a g e s , s u c h a s
E n g l i s h , l i b e r a l l y s u p p l e m e n t e d by a t e r s e s h o r t h a n d no t a t i on invo lv ing the
l e t t e r s of v a r i o u s a l p h a b e t s p r i n t e d in v a r i o u s t y p e s of f o r m a t s , and by
m a n y s p e c i a l s y m b o l s , such a s the e q u a l i t y o r i den t i t y s ign , the s u m m a ­
t ion and p r o d u c t s i g n s , and the s ign for an i n t e g r a l .

With in s u c h an e n r i c h e d n a t u r a l l a n g u a g e the m a t h e m a t i c i a n m a k e s
a s s e r t i o n s , e m b o d i e d s y n t a c t i c a l l y in s e n t e n c e s , and f u r t h e r m o r e he c l a i m s
t h a t s o m e of t he a s s e r t i o n s fol low f r o m , o r a r e c o n s e q u e n c e s of, o r a r e
d e d u c i b l e f r o m , one o r m o r e o t h e r a s s e r t i o n s . In any p a r t i c u l a r c a s e , to
show t h a t t h i s i s i n d e e d s o , t he m a t h e m a t i c i a n s e e k s to p r o v i d e a proof of
an a s s e r t i o n T f r o m a s e t of p r e m i s e s . P , . P2, . . . , Pj^. The b u r d e n of the
p r o o f i s to e s t a b l i s h t he fact t h a t if the p r e m i s e s P , , P j , . . . , P ^ a r e t r u e ,
t h e n so m u s t the c o n c l u s i o n , the a s s e r t i o n T, a l s o be t r u e . The ques t ion
w h e t h e r t he p r e m i s e s P j , P j , . . . Pjj a r e i ndeed t r u e is a s e p a r a t e m a t t e r
f r o m the q u e s t i o n w h e t h e r , if t h e y a r e , t h e n the c o n c l u s i o n m u s t b e .

T h e a p p a r a t u s of m o d e r n l o g i c a l t h e o r y p r o v i d e s an e x a c t a n a l y s i s
of t he n o t i o n s l u r k i n g beh ind the w o r d s and p h r a s e s u n d e r l i n e d in t he
p r e v i o u s p a r a g r a p h . A m a j o r c o n t r i b u t i o n of m o d e r n logic h a s b e e n the
c o n s t r u c t i o n of a f a m i l y of a r t i f i c i a l (as o p p o s e d to n a t u r a l) l a n g u a g e s in ­
c o r p o r a t i n g t he f r u i t s of t h i s e x a c t a n a l y s i s . T h e s e l a n g u a g e s a r e in tended
a s p r e c i s e c o u n t e r p a r t s of the e n r i c h e d n a t u r a l l a n g u a g e s t r a d i t i o n a l l y
u s e d by m a t h e m a t i c i a n s , hav ing at l e a s t the s a m e e x p r e s s i v e p o w e r as
(and. in s o m e c a s e s , f a r m o r e e x p r e s s i v e p o w e r than) t h e i r n a t u r a l c o u s ­
i n s . T h e c r e a t i o n of t h e s e a r t i f i c i a l l a n g u a g e s is a twofold boon: f i r s t , a
m o r e f ine ly t u n e d i n s t r u m e n t i s t h e r e b y p r o v i d e d for t a l k i n g , th ink ing , and
w r i t i n g m a t h e m a t i c a l l y ; but s e c o n d , t he l a n g u a g e of m a t h e m a t i c s i s now
e x h i b i t e d a s i t s e l f a p r e c i s e l y def ined s t r u c t u r e , c a p a b l e of be ing m a t h e ­
m a t i c a l l y s t u d i e d in j u s t the s a m e way a s g r o u p s , r i n g s , f i e l d s , t o p o l o g i e s ,
v e c t o r s p a c e s , and o t h e r s t r u c t u r e s a r e s tud i ed in t r a d i t i o n a l m a t h e m a t i c s .

P r o f o u n d and beau t i fu l r e s u l t s of f a r - r e a c h i n g i m p o r t a n c e h a v e
a l r e a d y b e e n o b t a i n e d in the f i r s t few d e c a d e s of w o r k m a d e p o s s i b l e by the
s e c o n d of t h e s e two b o o n s . S e v e r a l of t h e s e r e s u l t s a r e of i m p o r t a n c e for
o u r p r e s e n t d i s c u s s i o n . The f i r s t boon h a s not ye t , h o w e v e r , b e e n exp lo i t ed
s y s t e m a t i c a l l y . We a r e j u s t beg inn ing to r e a l i z e i t s p o w e r , wi th t he r e l ­
a t i v e l y r e c e n t a d v e n t of l a r g e , f a s t , a u t o m a t i c , s y m b o l - m a n i p u l a t i o n
m a c h i n e s .

2. Predica te Calculi of F i r s t Order

One subfamily of artificial languages constructed in modern logic
consists of the so-cal led predicate calculi of f irst order . There a re many
members of this family, some being but slight variants of others , some
being very different indeed from others, but all having in common certain
fundamental features which determine the family relationship. As the title
given to the family suggests, the central notion underlying the whole family
is that of a predicate.

We are used to the idea, in traditional mathematical usage, of
formulating such inscriptions as:

2 • X -F 4 = 10 (1)

and

12 • y ==29 . (2)

in which "x" and "y" are variables, thought of as ranging over some set
(say, the set N of positive integers), "2," "4," "10," "12," and "29" as
constants, "-f" "•" as operations, and " = " " £" as relat ions. If we sys ­
tematically replace "x" in (1) by constants denoting part icular members
of N:

(1.1)

(1.2)

(1.3)

(1.4)

etc. , we obtain a set of specific asser t ions , some of which are false, others
true, about members of N. In our example, (1.3) is true and all the res t
false. Similarly, systematically replacing "y" in (2) gives

(2.1)

(2.2)

(2.3)

(2.4)

etc., a set of asser t ions in which (2.1) and (2.2) are false and the res t are
true.

2 .

2 •

2 ,

2 •

. 1 -1- 4 =

• 2 + 4 =

. 3 -1- 4 =

• 4 4 - 4 =

= 10

= 10

= 10

= 10

12 .

12 •

12 •

12 •

. 1 > 29

• 2 a 29

- 3 a 29

4 5= 29

If we call the inscriptions (1.1), (1.2), ..., and (2.1), (2.2), ...,
sentences, then the inscriptions (l) and (2) are revealed as things which
give r i se to sentences whenever one replaces the variables which occur
within them by constants, or, in other words, by names of individual enti­
t ies from the set which is the range of the variables . These syntactical
things are called predicates . They may have many variables , not simply
one, as our examples have, and each variable may occur many t imes , not
just once, as in our examples. Thus, e.g.,

3x^ + 4x + 2y + y^ + z = w -I- 3w ' - z^ (3)

contains the four variables "x," "y," "z," and "w," each with two
occur rences .

So far our examples of predicates have involved just one type of
variable (i .e. , all ranging over the same set). But we can generalize this
feature by introducing other variables of different types, with different sets
to range over. Consider, for example:

R(/3(a(2,x), 4), 10) , (4)

which was obtained from (l) first by writing (l) in the form

= (-^(•(2,x), 4), 10) , (5)

that i s , by writing operators (or function signs) prior to their parenthesized
arguments , and relation signs prior to their parenthesized arguments; and
second by replacing " = ," ".", and "-I-" by variables "R," "a," and "j3."
We now may think of (4) as being a predicate containing variables of different
types: "R" has for its range the set G of all relations on N (a set of which
the identity relation is just one member) ; "a" and "j3" have as their ranges
the set F of all binary functions over the set N (sum and product being
just two par t icular members of this set); while 'x' as before has as its
range simply the set N itself.

The predicate (4) becomes a sentence, embodying a specific a s se r ­
tion, whenever "R" is replaced at each of its occurrences by the name of
something in G, 'a ' and '/3' a re replaced at each of their occurrences by
the names of things in F, and 'x' is replaced at each of its occurrences by
the name of something in N. Indeed, we may envisage theoretically the
resul t s of doing this replacement in all possible ways (of which there are
denumerably infinitely manyl) to obtain the set I of all the (denumerably
many) sentences which are instances of the predicate (4). Then each
member of I is either true or false, depending on which specific rep lace­
ments w^ere used to obtain it from (4).

A f u r t h e r g e n e r a l i z a t i o n f rom t h e s e i l l u s t r a t i o n s is r e q u i r e d . In
o u r e x a m p l e , we have u s e d b i n a r y r e l a t i o n s and b i n a r y func t ions only: but
in g e n e r a l we m a y w o r k with any (f ini te , p o s i t i v e) n u m b e r of a r g u m e n t s
for bo th r e l a t i o n s and func t ions , and not j u s t two as in ou r e x a m p l e .

T h e s e c o n s i d e r a t i o n s u n d e r l i e the s p e c i f i c a t i o n s of t ha t one of the
p r e d i c a t e c a l c u l i of f i r s t o r d e r which we s h a l l f i r s t c o n s i d e r .

We p r o v i d e , for t h i s l a n g u a g e , an u n l i m i t e d supp ly of e a c h of the
fol lowing c a t e g o r i e s of s y m b o l s :

A. R e l a t i o n a l v a r i a b l e s .

P , Q, R. P l , Qi , Ri , P2, . . .

B . F u n c t i o n a l v a r i a b l e s .

a , p, 7, O], |3i, 7 i , a^, . . .

C. Indiv idual v a r i a b l e s .

u, V, w, X, y, z, U.I, Vl, Wi, Xi, y i , Zi, u^, . . .

D. R e l a t i o n a l c o n s t a n t s .

= , >, s , >, <, (ad l ib i tum)

E . F u n c t i o n a l c o n s t a n t s .

+ . X, - , 7, (ad l ib i tum)

F . Ind iv idua l c o n s t a n t s .

0, 1, 2, 3, TT, e, . . . , (ad l i b i tum)

and the t h r e e " g r o u p i n g " s y m b o l s " (" , ") " , and " , " . We t h e n def ine two
d i f f e ren t c l a s s e s of s t r i n g s of t h e s e s y m b o l s , t e r m s and p r e d i c a t e s :

T e r m s

(a) An ind iv idua l c o n s t a n t i s a t e r m .

(b) An ind iv idua l v a r i a b l e i s a t e r m .

(c) If --T is a func t iona l v a r i a b l e o r a func t iona l c o n s t a n t , and C/i,
J z, ••, J]^ a r e t e r m s (with k a 1) then

^ (A 7k)

i s a l s o a t e r m (i . e . , the s t r i n g c o n s i s t i n g of-^ , fo l lowed by a
left p a r e n t h e s i s , fol lowed by 'C/i, fol lowed by a c o m m a , fol lowed
by 'J?2, e t c .) .

P r e d i c a t e s

(d) If £ i s a r e l a t i o n a l v a r i a b l e o r a r e l a t i o n a l c o n s t a n t , and
7 i ' "JZ' •••• Ck (with k ^ 1) a r e t e r m s , t h e n

R (^ i ^ k)

i s a p r e d i c a t e .

It wi l l be no ted tha t the e x a c t de f in i t ion of p r e d i c a t e s given
a b o v e i n c l u d e s , a s s p e c i a l c a s e s of p r e d i c a t e s , t h o s e which con ta in no
v a r i a b l e s , and h e n c e a r e s e n t e n c e s :

S e n t e n c e s

Any p r e d i c a t e wh ich c o n t a i n s no v a r i a b l e s i s a s e n t e n c e .

We now i n t r o d u c e s o m e f u r t h e r i d e a s , b a s e d upon the fact that it is
p o s s i b l e and i n d e e d c u s t o m a r y and i n d i s p e n s i b l e to m a k e new p r e d i c a t e s
out of o ld . T h e r e a r e two ways in which t h i s i s d o n e , t r u t h - f u n c t i o n a l c o m -
b i n a t i o n and q u a n t i f i c a t i o n , bo th of which h a v e in tu i t ive c o u n t e r p a r t s in the
n a t u r a l l a n g u a g e .

T h u s we i n t r o d u c e , a s a f u r t h e r supp ly of s y m b o l s , the following
f ive :

and s t a t e f o r m a l l y the fol lowing add i t ion to the def in i t ion of p r e d i c a t e :

(e) If Z' i s a p r e d i c a t e , t hen so is ~ fi ; ii P and Q a r e both p r e d i c a t e s ,
t h e n (P &: Q), (PM Q), ((^-» a) , and {IP--K3) a r e e a c h a l so
p r e d i c a t e s .

I n f o r m a l l y , the s y m b o l " ~ " i s in tended to c o r r e s p o n d to "it i s not
t he c a s e t h a t , " and i s c a l l e d the n e g a t i o n s ign : "&" i s i n t ended to c o r r e s ­
pond to "and , " "V " to t he l e g a l i s t i c b a r b a r i s m " a n d / o r , " and t h e y a r e
c a l l e d , r e s p e c t i v e l y , the con junc t ion s ign and the d i s j u n c t i o n s ign ; f ina l ly
"_»." i s i n t ended to c o r r e s p o n d to "if . . . t h e n , " and "<-»•" to "if and on ly
if," and they a r e c a l l e d , r e s p e c t i v e l y , the i m p l i c a t i o n s ign and the
e q u i v a l e n c e s i g n .

Our original supply of predicates (those given by part (d) of the
definition of predicate) a re now called atomic predicates , while those con­
structed via part (e) of the definition are called compound predica tes .

So much, for now, for the first method of constructing further
predicates from given ones, by truth-functional combination.

The second method, quantification, is intended as an exact counter­
part of the natural language phrases "for al l" and "there exis ts ." For
instance, harking back to example (1), we may say (falsely):

"For all X, 2x -f 4 = 10" (6)

or we may say (truthfully):

"There exists an x such that 2x -I- 4 = 10" . (7)

Two facts are noteworthy about (6) and (7). F i r s t , even though
they contain variables , they are sentences, that i s , they make specific
asser t ions and are hence either true or false. The variables which they
contain a re not, as in our ear l ier examples, capable of being replaced by
constants to produce sentences; on the contrary, if we replace them by
constants we get gibberish, e.g.,

"For all 3. 2 • 3 -h 4 = 10" (8)

"There exists a 17 such that 2 • 17 -f 4 = 10" . (9)

We therefore say that the variables are dummy variables , or that they
have been "killed" or "bound" by the phrases "for all . . ." and "there
exists"

The second noteworthy fact about (6) and (7) is that their truth or
falsity depends on that of sentences which are instances of the predicates
from which they were obtained. Thus (6) is true just in case all the in­
stances of (1) are t rue sentences, while (7) is true just in case not all of
these instances are false.

We incorporate these ideas into our artificial language by adding
the symbols "E" and "A" to our stock of symbols, and by appending a
third clause to our definition of predicate:

(f) If \^ is an individual variable, and ^ is a predicate , then

(A I'') P 3.nA {•£. V) P

are both also predicates .

10

In o r d e r to m a k e p r e c i s e t he no t ions of d u m m y v a r i a b l e s o r bound
v a r i a b l e s , we m u s t now add the fol lowing f o r m a l c h a r a c t e r i z a t i o n :

(g)(i) E a c h o c c u r r e n c e of any ind iv idua l v a r i a b l e a p p e a r i n g in an
a t o m i c p r e d i c a t e i s a f r e e o c c u r r e n c e of t ha t v a r i a b l e in
tha t p r e d i c a t e .

(ii) F r e e o c c u r r e n c e s of v a r i a b l e s in fi and Q r e m a i n so in
((^ & (5). {fi\lQ), i/P-^Q), ((^ ~ < 2) , and ~P, ~Q.

(iii) E a c h o c c u r r e n c e of V which is f r e e in iP i s bound in (A T /) / '
and in (E2 / ') / ' , and is f u r t h e r m o r e bound by tha t p a r t i c u l a r
o c c u r r e n c e of "A" o r " E . " (in add i t ion , tha t o c c u r r e n c e of
lA i m m e d i a t e l y a f t e r "A" o r " E " is a l s o bound in (Alf) P or
{El/')P, and is l i k e w i s e bound by tha t p a r t i c u l a r o c c u r r e n c e
of "A" o r " E . ") All o t h e r f r e e o c c u r r e n c e s of v a r i a b l e s
in P r e m a i n f r e e in (AV)P and {EV)P. {AV)P i s ca l l ed
the s c o p e of t h a t o c c u r r e n c e of " A , " l i k e w i s e for " E . " The
g r o u p of s y m b o l s " (A V) " is c a l l e d a u n i v e r s a l quan t i f i e r :
" (E l /) " i s c a l l e d an e x i s t e n t i a l q u a n t i f i e r .

I n f o r m a l l y , in e x a m i n i n g a p r e d i c a t e to d e t e r m i n e which o c c u r r e n c e s
of i t s v a r i a b l e s a r e bound and which f r e e , and, if bound, by what o c c u r ­
r e n c e s of "A" o r " E , " we w o r k f r o m the " i n s i d e " of the p r e d i c a t e to the
" o u t s i d e , " by s t a r t i n g wi th t h o s e i n n e r m o s t o c c u r r e n c e s of "A" or " E "
which h a v e no o t h e r q u a n t i f i e r s in t h e i r s c o p e s , and a l lo t t ing to t h e m any
o c c u r r e n c e s of ' t h e i r ' v a r i a b l e s wh ich o c c u r in t h e i r s c o p e s . T h en we
repeat this o p e r a t i o n for the o t h e r q u a n t i f i e r s , r e p e a t e d l y t ak ing the i n n e r ­
m o s t q u a n t i f i e r not yet t r e a t e d , a l lo t t ing to t h e m a l l f r e e o c c u r r e n c e s of
t h e i r v a r i a b l e s i n s i d e t h e i r s c o p e s (for now t h e r e m a y be s o m e bound
o c c u r r e n c e s , owned by q u a n t i f i e r s i n s i d e the s c o p e , which have t h e r e f o r e
a l r e a d y b e e n a l l o t t e d) .

T h u s , e v e r y o c c u r r e n c e of e v e r y ind iv idua l v a r i a b l e in e v e r y
p r e d i c a t e i s e i t h e r f r e e o r bound, and, if bound, bound by one and only
one q u a n t i f i e r : and we can a l w a y s d e t e r m i n e the un ique way in which
t h i s m u s t be the c a s e .

T h i s c o m p l e t e s the m o r p h o l o g y of ou r l a n g u a g e . We c o m m e n t
h e r e t h a t t he r e s t r i c t i o n of quan t i f i ca t ion to i nd iv idua l v a r i a b l e s i s what
d e t e r m i n e s o u r l a n g u a g e to be a p r e d i c a t e c a l c u l u s "of f i r s t o r d e r ";
l a n g u a g e s in which quan t i f i c a t i on o v e r r e l a t i o n a l v a r i a b l e s and func t iona l
v a r i a b l e s a r e a l s o s t u d i e d a r e d e s i g n a t e d a s be ing of h i g h e r o r d e r than
the f i r s t .

3. I n t e r p r e t a t i o n s . Va l id i ty , Sa t i s f i ab i l i t y , C o n s e q u e n c e .

We have a l r e a d y , in our i n f o r m a l p r e l i m i n a r y d i s c u s s i o n , t o u c h e d
upon the i n t e r p r e t a t i o n of t h i s a r t i f i c i a l l anguage

11

No specific interpretation is provided for the language defined above.
Indeed, it is a "general-purpose" language, and there comes with it a set
of instructions as to how to make your own interpretat ion suitable to the
job you have in mind in using the language. The instructions are these:

A. Choose a specific set S as the range of each individual
variable, and to each member of S allot a unique distinct one
of the individual constants to be its name. (You may have a
lot of individual constants left over, with nothing in S to
name; if so, forget about them.)

B. Now consider successively the set of all singulary functions
from S to S, all binary functions from SxS to S, and so on;
these sets are to be, respectively, the ranges of any functional
variable which occurs in a predicate with one, two, ..., a rguments .

C. Allot to each member of each of these sets of functions over S,
exactly one of the functional constants to be its name.

D. Do the same as in B and C, for all the singulary, binary, ...,
relations over S, assigning thereby ranges to all occurrences
of relational variables , and assigning distinct unique relational
constants as names for the distinct relations over S.

Notice that the only choice you have in making an interpretation is of the
initial set S, and of the names of the various entities thus determined
from the stock of general-purpose names provided for you by the language.
Once you have done this, the status of all predicates of the language is
uniquely determined except those containing unused names, which we
ignore in what follows. In part icular , the truth or falsity of each sentence
is completely fixed by your choice of S and your assignment of names .
Two other labels are provided in order to assign a status to predicates
which are not sentences. We say that a predicate is satisfiable in an
interpretation if not all of the sentences which are its instances are false
in the interpretation; a predicate is valid in an interpretation if none of
the sentences which are its instances are false in the interpretat ion.

Now it makes at least as much sense here as anywhere else in
mathematics to pass to the notion of all possible sets S which might be
chosen as the initial set for an interpretation of our general-purpose
language, and thence to the class of all possible interpretations which the
language can be given. In t e rms of this idea, we can assign absolute
s tatuses to the predicates as follows: a predicate is valid (period) just in
case it is valid in all interpretat ions; a predicate is satisfiable (period)
just in case there is at least one interpretation, among all the possible
interpretat ions, in which it is satisfiable.

12

We a r e now at a point w h e r e we c a n def ine e x a c t l y what i s m e a n t
by s a y i n g tha t in o u r l a n g u a g e a s e n t e n c e T "fol lows f r o m " o r " i s a
c o n s e q u e n c e of" one o r m o r e o t h e r s e n t e n c e s P j Pji- The de f in i t ion
IS t h i s : T i s a c o n s e q u e n c e of P , , . . . , P ^ j u s t in c a s e tha t T i s t r u e in
e v e r y i n t e r p r e t a t i o n in which P i Pj^ a r e e a c h t r u e . (It m i g h t a l s o
b e t r u e in o t h e r i n t e r p r e t a t i o n s b e s i d e s , but i t m u s t at l e a s t be t r u e in
t he o n e s s t a t e d .)

The r e a d e r m a y be th ink ing tha t t h e s e de f in i t ions of " v a l i d i t y , "
" s a t i s f i a b i l i t y , " and " c o n s e q u e n c e " a r e h ighly i m p r a c t i c a l to u s e a s a
d o w n - t o - e a r t h m e a n s of a s s i g n i n g a s t a t u s to a p r e d i c a t e , o r of d e t e r ­
m i n i n g w h e t h e r one s e n t e n c e is a c o n s e q u e n c e of one o r m o r e o t h e r s .
He i s r i g h t . T h e y a r e . But t h e y a r e not i n t ended a s p r a c t i c a l c r i t e r i a
fo r d e t e r m i n i n g t h e s e p r o p e r t i e s of p r e d i c a t e s , but r a t h e r only a s a n a l ­
y s e s of the a c t u a l con t en t of t h e s e no t i ons in g e n e r a l m a t h e m a t i c a l (i . e . ,
s e t - t h e o r e t i c) t e r m s . F o r p r a c t i c a l p u r p o s e s , we p a s s now to a n o t h e r
s e t of c o n c e p t s and de f in i t i ons which a r e in t ended , in a d o w n - t o - e a r t h
s e n s e , to be u s a b l e by peop le and m a c h i n e s .

4 . D e d u c t i o n ; P roof ; T h e o r e m s ; T h e D e c i s i o n P r o b l e m .

The c r i t e r i o n for d e t e r m i n i n g w h e t h e r a s e n t e n c e T i s a consequence
of one o r m o r e o t h e r s e n t e n c e s P i , P^, . . . , Pn g iven in the p r e v i o u s sec t ion
i s no t , in g e n e r a l , p r a c t i c a l l y a p p l i c a b l e , s i n c e it i nvo lves the t o t a l i t y of
p o s s i b l e i n t e r p r e t a t i o n s . A d i f fe ren t kind of c r i t e r i o n , whose app l i ca t i on
d e p e n d s on ly on the i m m e d i a t e s y n t a c t i c a l s t r u c t u r e of the s e n t e n c e s in
q u e s t i o n , i s t h e r e f o r e p r o v i d e d . In ou t l i ne , the c r i t e r i o n c o n s i s t s of a s m a l l
s e t of s t r u c t u r a l r e l a t i o n s h i p s which one s e n t e n c e T c a n have with r e s p e c t
to a s e t of o t h e r s e n t e n c e s . P i , P j , . . . , Pn- In any p a r t i c u l a r c a s e , w h e r e
a s e n t e n c e T d o e s in fact b e a r one of t h e s e r e l a t i o n s h i p s to a s e t P j , P^,
. . . , P j j , we s a y tha t T is i m m e d i a t e l y d e d u c i b l e f r o m P] , P2, . . . , P^ by
v i r t u e of the r e l a t i o n s h i p in q u e s t i o n . E a c h of the r e l a t i o n s h i p s is c a r e ­
ful ly def ined so tha t the q u e s t i o n a s to w^hether it d o e s o r d o e s not ob ta in
b e t w e e n a s e n t e n c e T and a s e t of s e n t e n c e s P i , P2. P n i s a l w a y s
e f fec t ive ly d e c i d a b l e by a m e c h a n i c a l p r o c e d u r e which is u n i f o r m and
wh ich i s a p a r t of the s p e c i f i c a t i o n of the r e l a t i o n s h i p .

If we h a v e a s e q u e n c e T i , T2, ••., Tj^, of s e n t e n c e s wi th t he p r o p e r t y
t h a t e a c h T j . 1 £ i s m , in the s e q u e n c e e i t h e r (a) i s i t se l f one of a g iven
s e t of s e n t e n c e s P i , . . . , Pjj , o r (b) i s i m m e d i a t e l y deduc ib l e f r o m a s e t of
s e n t e n c e s e a c h of wh ich o c c u r s e a r l i e r in the s e q u e n c e , then we s a y tha t
t he s e q u e n c e is a deduc t ion of i t s l a s t m e m b e r , T j ^ , f r o m the s e t P j ,
Pj^ a s p r e m i s e s .

The q u e s t i o n w h e t h e r a g iven s e q u e n c e of s e n t e n c e s , a l l e g e d to be
a deduc t ion of i t s l a s t m e m b e r f r o m a given s e t of s e n t e n c e s , i s o r i s not
i ndeed s u c h a deduc t ion , i s aga in m e c h a n i c a l l y d e c i d a b l e in a u n i f o r m w a y .

13

What is not, a las , a mechanically decidable question is whether or not for
a given sentence T and a given set Pi, P2, ..-, Pn of sentences, there exists
a deduction of T from Pi, P2, ..., Pjj as p r emi se s . The proof that this
question is not mechanically answerable by "Yes" or "No" through applica­
tion of an algorithm is one of the great resul ts of modern logic. It was first
given in 1936 by Alonzo Church of Princeton University. This is not the
place to discuss this mat ter at any more length. Suffice it to say that, as
will appear in the sequel, there are mechanical methods which will uni­
formly determine a deduction of a sentence T from a set Pi, P2, •••, Pjj of
sentences, provided that such a deduction exis ts ; but if no deduction exists ,
these methods will, in general, never terminate in a discovery of this non­
existence. They a re . therefore, only "semi-a lgor i thms," capable only of
answering "Yes," not capable, in general, of answering "No."

A second great resul t of importance here was first given by
Kurt Godel in 1931. It is that any sentence T which is valid in the sense
of the previous section can be obtained as the last member of a deduction
from the empty set of p remises . (This property is known as the com-
pleteness of the deductive apparatus of the language.) It is also the case
that only valid sentences can be so obtained. Thus, although the charac te r ­
izations" are utterly different, the concepts of validity and deducibility from
the empty set of premises in fact determine precisely the same class of
sentences.

It would require too much space to discuss the details of the re la ­
tionships governing immediate deducibility. Excellent accounts are
available in the l i terature [see especially W. V. Quine's Methods of Logic,
Revised Edition. Holt-Dryden (1959) and P. Suppes' Introduction to Logic,
Van Nostrand (1957)], but each differs from the other in various ways
which do not affect the completeness and consistency proper t ies . For our
purposes, we note just one of the deducibility principles, namely, that if
a sentence S is deducible from premises Pi, ..., P^, then the sentence
(Pi —" (P2 —" •• -(Pn —*• S)...)) is deducible from no premises at all, and is
therefore valid (or "logically true") by virtue of Gbdel's completeness
theorem. Hence, to every deduction there corresponds a valid sentence,
and the question whether a sentence T can be deduced from premises
P], Pjj is equivalent to the question whether the sentence
(Pi —" (P2 —" ...(Pj^—• S)...)) is valid. Since the first question admits of no
algorithmic method for its settlement, neither can the second.

Now the question whether a sentence S is valid is equivalent to the
question whether its negation, ~S, is satisfiable (to be prec ise , S is valid
just in case ~S is not satisfiable). And the negation of (Pi —» (P2 —'• ...(Pn-» S)
...)) is (Pi&P2&... &Pn&~S), where inner parentheses have been omitted for
the sake of revealing the pattern. If, therefore, we could show
(Pi&P2&--- &Pĵ &~S) to be unsatisfiable, we would have shown that S is
deducible from Pj , ..., Pn as p remises .

14

But this is just the general problem of theorem proving in axioma-
tized mathematical theor ies . Let the axioms of a theory be written as
sentences Pi, Pn of the f i r s t -order predicate calculus given here , and
let the theorem to be proved be written as a sentence T. To prove that
T is a theorem of the theory embodied in the axioms Pi, Pn ^^ then
essential ly the same task as that of showing the single sentence
(Pl &P2&... &Pn& ~T) to be unsatisfiable.

15

CHAPTER II. THE PROCEDURE H.

1 • Prenex Conjunctive Normal Form. The Procedure H.

There is a straightforward technique [described in Quine, op. cit. ,
or in Hilbert and Ackermann's Mathematical Logic, Chelsea (l 950)] whereby
any sentence of the predicate calculus can be put into a certain standard form
called the prenex conjunctive normal form. In this form, all the quantifiers
(if any) of the sentence occur at the beginning, and jointly comprise the p r e ­
fix of the sentence. Fur thermore , the predicate part of the sentence (often
called the matrix) has the form of a conjunction of disjunctions, each member
of which is either an atomic predicate or the negation of an atomic predicate.

In preparing to ca r ry out the procedure H in order to show a sentence
(P] &P2 &... &Pn&~ S) inconsistent, we first reduce Pi, P2,.. . ,Pn, and ~ S to
prenex conjunctive normal form, each separately from the other. This step
resul ts in a finite list of sentences each beginning with a finite sequence of
quantifiers.

The second step is to drop, from the front of the first sentence which
begins with an existential quantifier, that existential quantifier, and to r e ­
place each occurrence of the variable thus freed by an individual constant
(the same one at each occurrence) which does not occur elsewhere anywhere
in the list of sentences. This operation is repeated until each sentence begins
either w îth a universal quantifier or w îth no quantifiers at all .

(These two steps must be performed prior to inputting the sentences
to the program GAMMA I.)

Now we proceed to append successively to the list of sentences further
sentences obtained by systematically dropping initial quantifiers from ear l ie r
sentences in the list and replacing the var iables , thus freed, by systematically
chosen individual constants. (In what follows, we employ numerals as the
individual constants.) The systematic method is given as follows:

Suppose the list at the nth step of this process consists of the sentences
Si, S2,...,Sp, and that the largest numeral to have been used so far as an
individual constant is 0. Then:

(i) If Sp begins with an existential quantifier, let Sp.|. be the sentence
obtained from Sp by dropping that existential quantifier, and r e ­
placing each of the occurrences of the variable thus freed by the
numeral 0-t-l .

16

(ii) If Sp does not begin with an existential quantifier, let Y be the
ear l ies t numeral with which some universally quantified sentence
on the list has not yet been instantiated; if * > 0, the process
t e rmina tes . Otherwise, let Sj be the first universally quantified
sentence on the list which has not yet been instantiated with ^ ,
and let Sp.|.i be the resul t of instantiating S; with * .

Successive sentences added in this way are all consequences of the original
starting l is t . There is a great theorem, first proved by Jacques Herbrand
in 1930, that the conjunction of the sentences in the starting list is unsatisfi­
able just in case , for some integer x, the conjunction of the first x sentences
on the generated list is truth functionally unsatisfiable. Fur thermore , we
can drop from this conjunction any sentences that begin with quantifiers, and
consider only the conjunction of the quantifier-free sentences (i.e., those
containing no variables) .

But we can always test the quantifier-free conjunction of sentences
at any point in the generating process and ar r ive at a decision algorithmically
whether or not it is truth-functionally unsatisfiable, and thus, if there _i£ an
X at which the conjunction of all the quantifier-free sentences up to and in­
cluding Sx is unsatisfiable, we shall certainly find it, and thereby have proved
that the original list of sentences is inconsistent, and that therefore the as ­
sociated deduction can be made.

Ear l ier attempts to mechanize this method were handicapped by a
lack of an efficient method for testing for truth-functional unsatisfiability.
But recently, Martin Davis and Hilary Putnam (A Computing Procedure for
Quantification Theory, Journal of the Association for Computing Machinery,
Vol. 7, No. 3, July I960) gave a remarkably efficient method which is now
described here , slightly modified. An elegant and useful additional feature
(due to Herbert L. Gray) has been added.

2. The Truth Functional Method of Davis and Putnam

The conjunction of a finite number of sentences, each of which is in
conjunctive normal form (i .e . , is a conjunction of disjunctions of atomic
sentences), is itself a sentence in conjunctive normal form. Let Aj Av
be the distinct atomic sentences occurring anywhere in the conjunction.
Each disjunction contains one or more members of the set [Ai Awl,
either negated or unnegated (but not both Aj and ~Ai, for any i) . The
question whether the entire conjunction is satisfiable or not is the question
whether or not truth values can be assigned to each of the A^ in such a way
that each disjunction in the conjunction is made t rue . In order to make a
disjunction t rue, one need only make at least one of its members t rue . If
none of the 2^ possible assignments of truth values to the set [Ai Au]
makes the whole conjunction t rue, then it is unsatisfiable: otherwise it is
satisfiable.

17

The D a v i s - P u t n a m p r o c e d u r e c o n s i s t s of e l i m i n a t i n g s u c c e s s i v e l y
e a c h a t o m i c s e n t e n c e f r o m the con junc t ion unt i l e i t h e r a l l of t h e m a r e
e l i m i n a t e d (in which c a s e the o r i g i n a l con junc t ion was s a t i s f i a b l e) or a s t a g e
i s r e a c h e d at which two d i f fe ren t d i s j u n c t i o n s a r e ob t a ined , both con ta in ing
on ly one m e m b e r , such tha t the m e m b e r of one d i s j unc t i on i s the n e g a t i o n
of the m e m b e r of the o t h e r . Spec i f i ca l ly , we p e r f o r m the fol lowing p r o c e s s :

1 . If the con junc t ion is now e m p t y , then the o r i g i n a l con junc t ion
w a s s a t i s f i a b l e . The p r o c e s s t e r m i n a t e s .

2. O t h e r w i s e , if, in the c u r r e n t con junc t ion , e a c h d i s junc t ion c o n ­
t a i n s at l e a s t one u n n e g a t e d a t o m i c s e n t e n c e , then the o r i g i n a l
con junc t ion i s s a t i s f i a b l e ; l i k e w i s e if each d i s junc t ion c o n t a i n s
a t l e a s t one n e g a t e d a t o m i c s e n t e n c e . The p r o c e s s t e r m i n a t e s .
(This s t ep is due to H e r b e r t L. G r a y .)

3 . O t h e r w i s e , if the c u r r e n t con junc t ion c o n t a i n s a p a i r of d i s j u n c ­
t i ons w h o s e only m e m b e r s a r e , r e s p e c t i v e l y , an a t o m i c s e n t e n c e
and the nega t ion of the s a m e a t o m i c s e n t e n c e , the o r i g i n a l con ­
junc t ion is u n s a t i s f i a b l e . and the p r o c e s s t e r m i n a t e s .

4 . O t h e r w i s e , if t h e r e i s at l e a s t one d i s junc t ion which c o n t a i n s
only one s e n t e n c e (e i the r an a t o m i c s e n t e n c e or the nega t ion of
an a t o m i c s e n t e n c e) , we d e l e t e f r o m the conjunct ion a l l d i s j u n c ­
t ions con ta in ing tha t s e n t e n c e , and d e l e t e a l l ind iv idua l o c c u r ­
r e n c e s of i t s n e g a t i o n (~ S is the n e g a t i o n of S, and S the n e g a t i o n
of ~ S) w h e r e v e r they o c c u r . Then r e t u r n to s t e p 1 .

5. O t h e r w i s e , if any a t o m i c s e n t e n c e o c c u r s only unnega t ed t h r o u g h ­
out the e n t i r e conjunc t ion , o r o c c u r s only n e g a t e d , e l i m i n a t e all
d i s j unc t i ons which con ta in i t . Then r e t u r n to s t ep 1 .

6. O t h e r w i s e , we have the s i t u a t i o n that e v e r y a t o m i c s e n t e n c e
o c c u r s both n e g a t e d and u n n e g a t e d in the con junc t ion , and no
d i s junc t ion con t a in s l e s s than two m e m b e r s . W r i t e t h e r e ­
f o r e , the conjunct ion in the f o r m

(AV Dl) & ... &(AV Dm) &(~AV Ei) &... & (~AV E^) &Gi &... &Gr

and then w^rite

(DiVEi) &.. .&(DiVEn)&(D2VEi)&.. .&(D2VEn)&.. .&(Dj„VEi)8c. . . &

(DjnVE^)&Gi&.. .&Gj. ,

a con junc t ion of d i s j u n c t i o n s in which the a t o m i c s e n t e n c e A does
not o c c u r . The Di, E ; , and Gj^ a r e d i s j u n c t i o n s involv ing a t o m i c
s e n t e n c e s o t h e r than A. Then r e t u r n to s t e p 1 .

In the above p rocess , each step where a new conjunction is obtained
with at least one less atomic sentence occurring in it than in the conjunction
from which it was obtained ca r r i e s with it the assurance that the new sentence
is truth-functionally satisfiable if and only if the old one i s . Proofs may be
found in the paper by Davis and Putnam cited previously.

Each time an i teration of the process is car r ied out, at least one
atomic sentence is removed, and hence the entire process te rminates in a
decision, as to satisfiability or unsatisfiability of the starting conjunction,
in at most k i terat ions. In pract ice , far fewer i terations than k a re found to
be required for most cases that a re actually encountered.

19

CHAPTER III. THE PROGRAM G A M M A I

1. The language used by GAMMA I

The actual artificial language employed by GAMMA I is but a sub­
language of that described in Chapter I. GAMMA Ts language contains no
functional variables and no functional constants. Hence, all of its t e rms
are either individual variables or individual constants. Despite this
apparent loss of expressive power, we still in fact have just as expressive
an instrument as before; now, however, in order to state certain things,
we must r e so r t to a slightly less convenient and familiar technique of
formulation. Instead of saying, e.g.,

2 • X -I- 4 = y . , (1)

we must introduce a relational constant, say E, and write

E(x, y) , (2)

defining E to be such a relation that (2) is true for just those ordered
pairs of constants for which (l) is t rue.

By this subterfuge we can reformulate any assert ion, or predicate,
which involves functional variables or functional constants, by introducing
relational variables or relational constants.

A further restr ic t ion on GAMMA I's language is that we may use no
more than three arguments in any predicate. This still leaves us with
plenty of room to operate; most of the interesting examples require no more
than th ree - t e rm relations. The reason for this res tr ic t ion is that it ren­
dered the programming problem immeasurably easier . It is planned that in
GAMMA II no such restr ict ion will be imposed, and the full apparatus of the
language introduced in Chapter I will be the language employed.

In addition to these quite major res t r ic t ions , several minor ones
should be pointed out. By confining ourselves to fixed-format data fields
in GAMMA I's design, we createdthe restr ic t ion that no more than 255 dif­
ferent relational variables could be employed, no more than 255 different
individual variables , and no more than 255 different individual constants.
These are minor simply because problems which would not fit within them
would be already absurdly infeasible problems for GAMMA I, on other
grounds entirely. We shall be discussing these other grounds later.

2. Atomic sentences and predicates and negations thereof: l i tera ls

Let us for convenience use the word "l i teral" to denote indifferently
an atomic sentence, an atomic predicate, or a negation of either. The t e rm
is due to Davis and Putnam.

20

The b a s i c 36 -b i t 704 w o r d p r o v i d e s the f r a m e for the s t r u c t u r e of
a t o m i c s e n t e n c e s and p r e d i c a t e s in GAMMA I ' s l anguage . The w o r d i s
d iv ided into four f ie lds of 9 b i t s e a c h (s e e d i a g r a m) . E a c h f ield is s u b ­
div ided into two subf ie lds , the f i r s t be ing the l e f t m o s t bi t , the s e c o n d be ing
the o the r e ight b i t s .

Relational Variable
Field Argument Fields

i

Negation Sign Field;
'0' for unnegated,
'1' for negated literals

Relational
variable

Individual variable

Individual constant

•0* for constant.
'1* for variable

In each of the four e igh t -b i t f i e lds , we m a y put any one of the 255
e igh t -b i t p a t t e r n s , 00000001 th rough 111 11111, to i n d i c a t e which s y m b o l
(r e l a t i ona l v a r i a b l e , individual v a r i a b l e , or ind iv idual c o n s t a n t , depend ing
on which field and, in the second two c a s e s , on which of ' 0 ' o r ' 1' o c c u p i e s
the l e f tmos t b i t - p o s i t i o n in the field) we have s e l e c t e d to put t h e r e . Sin­
gu l a ry and b i n a r y p r e d i c a t e s u s e only one (the f i r s t) and only two (the
f i r s t and second) , r e s p e c t i v e l y , of the t h r e e a r g u m e n t f i e lds , the u n u s e d
ones being left wi th b i n a r y z e r o s in each b i t - p o s i t i o n . Nega t ion of the
whole a t o m i c s en t ence is i nd ica ted by a ' 1 ' in the f i r s t bi t pos i t ion ; l a ck of
nega t ion by a ' 0 ' t h e r e .

Which e igh t -b i t p a t t e r n s a r e u s e d to r e p r e s e n t which r e l a t i o n a l
v a r i a b l e s or which individual v a r i a b l e s h a s been left to the d i s c r e t i o n of
the u s e r of the p r o g r a m : but the individual c o n s t a n t s a r e c o n s i d e r e d by
the p r o g r a m to be o r d e r e d in t he i r n a t u r a l o r d e r f r o m 00000001 to
11111111, for the p u r p o s e s of c a r r y i n g out the i n s t a n t i a t i o n p r o c e s s w i t h ­
in the p r o c e d u r e H. If the p r o g r a m is a l lowed to r u n for so long a t i m e
that the in s t an t i a t i on p r o c e s s ca l l s for the subs t i t u t i on of an ind iv idua l
cons tan t beyond l l l l l l l l in th i s o r d e r i n g , it t e r m i n a t e s at t ha t po in t
with a p r i n t e d explana t ion of i t s r e a s o n for having s topped . I t s c a p a c i t y
has been r e a c h e d in th i s d i r e c t i o n . (T h e r e a r e o the r w a y s in which i t s
capac i ty can b e c o m e e x h a u s t e d a l so : t h e s e wi l l be exp l a ined in the
a p p r o p r i a t e p lace .)

3. Dis junc t ions of l i t e r a l s

Since the s e n t e n c e s m a n i p u l a t e d by GAMMA I a r e at a l l t i m e s in
p r e n e x conjunct ive n o r m a l f o r m , we a r e ab le to r e p r e s e n t t h e m wi thou t
expl ic i t ly employing s y m b o l s for e i t h e r d i s junc t ion o r conjunc t ion .

21

To represen t a disjunction of N l i terals we simply construct a se ­
quence containing the N words encoding the l i te ra ls , and prefix at the front
of the sequence a further word containing the integer N in the FORTRAN
integer word format, viz., with low-order bit in the 18th bit position (a posi­
tion helpfully designated as the seventeenth, under IBM's conventions, which
involve denoting the first position as 'S' (for 's ign') , the second as first,
the third as second, and so on).

A conjunction of M disjunctions is then represented by a sequence
of M such sequences as were defined in the previous paragraph, the whole
sequence being prefixed by a word containing an integer, in FORTRAN in­
teger word form, giving the total number of words which are contained in
the M disjunctions, (it would have been nicer if the integer to be specified
were M; but life is not like that, always.) Included in this count must be the
words prefixing each disjunction. As a schematic il lustration, consider

(14) (1)(A) (3)(A)(B)(D) (2)(C)(D) (4) (A) (G) (H) (K) .

The le t ters represent l i te ra ls : there are four disjunctions, containing,
respectively, one, three, two, and four l i te ra ls , as indeed their respective
"counters" (as we shall henceforward often refer to them) indicate. The
total number of words, including the four counters as well as the l i tera ls ,
is fourteen, and the leading word so indicates.

By this means we avoid the necessity of employing special symbols
for conjunction and disjunction, at the expense of having to use the counters;
these, however, facilitate the internal computer processing of the sentences
enormously.

4. The Quantifier Prefix

The remaining portion of a sentence in prenex conjunctive normal
form, over and above the conjunction of disjunctions of l i terals which com­
pr i ses its matrix, consists of the initial sequence of zero, one or more
quantifiers which bind the individual variables within the matrix.

It turned out to be far more efficient for GAMMA I to put its quanti­
fier prefixes, not at the beginning, and in the natural order , but ra ther at
the end, and in the r eve r se order . In constructing sentences for input to
GAMMA I, therefore, that is where we put, and that is the order in which
we put, the "prefix" (a designation no longer very appropriate) .

If the total number of quantifiers in the prefix is K (including the
case K = 0), we first put K, as a FORTRAN integer-word, immediately
after the last word of the matr ix . We then put successively a FORTRAN
integer-word for each quantifier, with positive sign indicating universal ,
negative sign existential, quantifiers. The integer used in each quantifier

22

is that corresponding to the bit pattern representing the individual variable
belonging to the quantifier, i.e., we simply place the bit pattern itself with
its rightmost bit in the 18th bit position of the quantifier word. Of course,
if K = 0, we do not put any quantifier words after the prefix counter. But
the zero word is mandatory, for the counter itself. GAMMA I takes the pre­
fix counters quite seriously.

5. The Input to GAMMA I

Thus we construct the sequence of 704 words which is a representa­
tion of a sentence in prenex conjunctive normal form for GAMMA I. A set
of such sentences, comprising the initial list for the procedure H, is r ep re ­
sented by sticking the respective word sequences end-to-end to form one
single sequence containing, let us say, W words in all (including all of the
various counters). The number W is supplied to GAMMA I as the value of a
FORTRAN integer variable MATEND. The number of sentences in the list
(i.e., the number of the prenex conjunctive normal form sentences) is like­
wise supplied, as the value of a variable JLINE. The highest individual
constant which occurs anywhere in the input list of sentences is considered
as an integer in the obvious way and supplied as the value of a variable
LPHI.

The sequence of words comprising the list of sentences after the
above fashion is given to GAMMA I as a one-dimensional FORTRAN array
MATRIX. MATRIX (1) is thus the first word of this ar ray , and MATRIX
(MATEND) the last word of this ar ray .

The final major piece of input information required by GAMMA I is
a list of numbers stating respectively in which word of the a r ray MATRIX
the successive prenex conjunctive normal form sentences begin. (The first
such number clearly is always 1.) This list of numbers, in ascending
order, is given as a one-dimensional FORTRAN ar ray LINE. LINE (l) is
thus the first word of this array; LINE(JLINE) is the last.

We have also provided, as a convenience, for up to 120 words of
BCD comment data, which is read in along with all the other information at
input time and used essentially as a label for the problem. Any mater ia l
capable of being printed may be put in the comment a r ray , which is formally
a FORTRAN one-dimensional a r ray LEAD. The number of words actually
used is supplied as the value of a variable LEADMX, and thus the a r ray
will begin with LEAD(l) and end with LEAD(LEADMX).

23

Physically, an input deck of cards is prepared as follows:

1st card:

In four successive 6-column fields, beginning with column 1, the
values of MATEND, JLINE, LPHI, and LEADMX are punched, hard
over to the right of each field, with leading zeros either left blank
or not, as one pleases .

2nd through kth cards:

(where k is no greater than it must be in relation to the value
assigned to LEADMX.) The comment is punched, 6 characters to a
word, 12 words to a card. It is not mandatory that LEADMX be a
multiple of 12.

(k-l-l)st card onwards:

Each card has five successive fields of 14 columns, starting with
column 1; in the rightmost 12 columns of each field are punched, in
octal form, the words of the a r ray LINE followed by the words of
the a r ray MATRIX. There will therefore be (JLINE -I- MATEND)
octal words in all.

Such a deck is the entire input information required for a problem.
GAMMA I will handle one problem after another, and we simply stack the
respective decks on top of each other, in the desired order, in the card
reader . After having processed the last deck in such a batch of problems,
GAMMA I selects the card reader in quest of another; finding none, it stops,
and this is the normal manner for a run to terminate . This is indeed the
only stop not deemed worthy of a printed comment at the on-line printer .

After having processed a problem, GAMMA I prints the entire com­
ment a r ray LEAD at the on-line printer , followed by its verdict (INCON­
SISTENT or CONSISTENT), followed by the number of minutes which were
required to complete the procedure H and find the proof. If a problem were
submitted which was not in fact inconsistent (a synonym for unsatisfiable),
and which was not in the category for which the instantiation process
te rminates , then, whereas the theoretical procedure H for such a problem
goes on for all eternity, GAMMA I goes on until its capacity is exhausted
in one or other of the several ways in which this can occur. Since this
could be quite a long time, a way has been provided to terminate a problem
arb i t ra r i ly and peremptorily from the console: sense switch 2 is pushed
down, and GAMMA I prints out an appropriate comment at the on-line
pr inter and moves on to the next problem, if any. When this "get-off"
facility is used, sense switch 2 should be placed UP again before the next
problem deck has been entirely read in - otherwise it too will be summarily
terminated.

24

In addition to the information supplied to the on-line printer at the
end of each problem, fuller information is written on TAPE 2 pertaining to
the problem just completed. In part icular , a copy is provided of the
quantifier-free conjunction of sentences which was found to be inconsistent
(or found to be consistent, in the case of a problem for which the instantia­
tion process happens to terminate, and which, in addition, happens to be
consistent). The remaining information consists of the number of t imes
the Davis-Putnam truth-functional analysis was performed, and the number
of iterations of it which were required in the performance of its final,
decisive application.

After these notes about the observable behavior of GAMMA I, and
the discussion of its input requirements, we now pass to an examination of
the program itself.

6. GAMMA I itself

It seems reasonable to discuss GAMMA I's organization and s t ruc­
ture entirely on the FORTRAN symbolic statement level, the precise details
of the compiled object program in SAP machine language not being necessary
for a knowledge of the program's logical propert ies .

The flow of events takes place essentially just as is specified in the
theoretical algorithm which we have been calling procedure H. The original
input a r ray MATRIX grows longer, for we add to it further sentences ob­
tained by instantiation, provided they have one or more quantifiers surviving
in their prefixes. Those that do not, which are therefore quantifier-free
sentences, we segregate, and stack them end to end in a new a r ray called
MODEL. In doing so, we omit both the initial counter (which, one recal ls ,
gives the total number of words in the matr ix part of the sentence) and the
terminal (zero) prefix counter. We can do without the former because we
no longer need to preserve the separate identity of each sentence making
up the quantifier-free conjunction, for we are building up but a single, long,
sentence; and we can do without the latter because in the present context it
tells us only something we already know - that there are no quantifiers in
the prefix. The ar ray MODEL therefore grows longer as the procedure con­
tinues. Its length is at all times stored as the value of a variable, MODEND.
As the ar ray MATRIX grows, so does the a r ray LINE, whose succeTH^^i
entries tell where, in MATRIX, the successive sentences begin. The values
of MATEND and JLINE, respectively, at all t imes tell how long each of these
ar rays is .

Eight thousand words of memory are available for the a r ray MATRIX
18000 for the ar ray MODEL, and 2000 for the a r ray LINE. If at any point
these storage areas are about to be exceeded, GAMMA I interrupts its
orderly processes , prints out a comment appropriate to the occasion, and
proceeds to the next problem, if any, in the input deck.

25

There are two modes in which GAMMA I operates as far as con­
cerns the matter of when to test MODEL by the Davis-Putnam process for
satisfiability or unsatisfiability. The first mode is automatic, in which
GAMMA I chooses for itself when to test, by a cri ter ion to be explained in
a moment. The second is manual, whereby the decision when to test is
made at the console. Which mode is operative is determined by the setting
of sense switch 4: UP for automatic mode, DOWN for manual mode. In the
manual mode, the decision to test is effected by depressing sense switch 5
and raising it again when the READ-WRITE SELECT light is lit up. This
phenomenon will occur after a second or two, and indicates that the Davis-
Putnam test procedure has gotten under way.

The points at which testing is done when in the automatic mode are
determined as follows: whenever, in the instantiation process , the sentence
in MATRIX which is about to be instantiated is the first, the instantiation
process is interrupted and a Davis-Putnam test of the current MODEL is
performed. Whenever this point is found to have been reached, a test is
also made to see whether the individual constant, which is about to be used
to instantiate the first sentence with, is greater than the largest one intro­
duced so far. If it is , then the instantiation algorithm calls for termination.
Therefore this fact is noted whenever it comes about, and GAMMA I does
not proceed with the instantiation process after the Davis-Putnam test has
been performed. Otherwise (unless the Davis-Putnam test turns up an
inconsistency) the instantiation process is then resumed right where it was
interrupted.

Since the Davis-Putnam test is "destructive" in the sense that
MODEL is successively reduced, perhaps to nothing, during the test, and
since, should the instantiation process have to be resumed, MODEL must
at that point be what it was before Davis-Putnam havoc was wrought upon
it, we write it out on TAPE 3 prior to testing, along with the entire a r ray
MATRIX. The lat ter a r r ay must also be "saved" because the Davis-Putnam
test requires its storage area as an extensive "scratch pad" on which to
make notes. Specifically, the Davis-Putnam process involves the construc­
tion of an a r r ay LIST during each iteration, the entries whereof are l i terals
which are either the lone occupants of a disjunction, or are such as occur
only unnegated, or only negated, throughout the entire MODEL. LIST is
assigned the same 8000-word storage area as is MATRIX.

Certain advantages are obtained in carrying out the Davis-Putnam
test procedure if at all t imes the l i terals within each disjunction can be
assumed to be in a fixed, known order . The handiest ordering to employ
was found to be that obtained by pretending that each l i teral is really a
35-bit binary number with a plus or minus sign attached, and then ordering
the l i tera ls within each disjunction in ascending absolute magnitude. The
necessary sorting is done immediately prior to appending a new quantifier-
free sentence to the end of MODEL. At this point is also performed the task

26

of deleting, within any one disjunction, all but one copy of any l i teral which
happens to have one or more duplicates of itself as colleagues in the dis­
junction; and if a disjunction is found to have mutually contradictory l i terals
within it (i.e., l i terals exactly alike except that one has a negation sign while
the other does not), then the entire disjunction is deleted. (For such disjunc­
tions are true no matter what truth values are assigned to their atomic con­
stituents; hence a conjunction containing such a disjunction is inconsistent
if and only if the remainder is.)

The flow of events within the Davis-Putnam test procedure is, again,
essentially given by the statement of the theoretical process described
earl ier , which process the program car r i e s out as there stated. The precise
details of the actual steps which are executed are best ascertained from the
symbolic FORTRAN program listed in the Appendix, where the l iberal com­
ments there provided tell the story plainly enough. The present overall
remarks are intended as no more than a helpful guide and companion during
a scrutiny of the FORTRAN program.

A word of running commentary on the way in which the instantiation
process is done by GAMMA I. An ar ray LSTUPE is constructed during the
process; its kth entry tells which sentence of MATRIX was last instantiated
by the kth individual constant. In assessing the question "Which sentence of
MATRIX should next be instantiated, and with what individual constant?",
GAMMA 1 exploits LSTUPE as follows: one selects the first entry in LSTUPE
which does not "point to" the final sentence in MATRIX. This entry is then
increased by 1, and the sentence then indicated is selected for instantiation.
If the entry is the ith in the a r ray LSTUPE, then the ith individual constant
is used to do the instantiation of the selected sentence. However, if all the
entries in the ar ray LSTUPE point to the final sentence in MATRIX, then
a new entry numerically equal to zero is added. This indicates that none of
the sentences of MATRIX have yet been instantiated by the corresponding
individual constant, but that the first sentence of MATRIX is just about to be.

Finally, a useful feature has been incorporated into GAMMA I to en­
able the user to have a picture of what is going on during internal processing.
The register MQ is not required during the processing, either in the instan­
tiation section of the program or in the Davis-Putnam section of the program.
Two numbers are therefore displayed on the console MQ neons, and their
behavior indicates how far GAMMA I has progressed with the problem at
the time.

During the instantiation process, we display in the left half of MQ
the number of sentences currently in MATRIX, and in the right half of MQ
the number of quantifier-free sentences which have so far been added to
MODEL.

27

During the Davis-Putnam process we display in the left half of MQ
the current length (total number of words) of MODEL, and in the right half
of MQ the number of i terations so far car r ied out of the Davis-Putnam
procedure.

Depressing sense switch 3 at any time causes GAMMA I to report
at the on-line printer the sentences which it is getting via the instantiation
process .

Depressing sense switch 1 causes GAMMA I to report , during the
Davis-Putnam tes ts , the successive appearances of MODEL as it is reduced
at each iteration.

28

C H A P T E R IV. SHORTCOMINGS OF GAMMA I. GAMMA II.

In the In t roduc t ion the r e m a r k was m a d e tha t , owing to t h e o r e t i c a l
p r o p e r t i e s of the p r o c e d u r e H, the p r o g r a m GAMMA I h a s m a r k e d l i m i t a ­
t ions as to what k inds of p r o b l e m it i s c apab l e of handl ing in a r e a s o n a b l e
span of t i m e . Spec i f ica l ly , t h i s i s due to the fact tha t , for m o s t " i n t e r e s t i n g "
(and t h e r e f o r e suff ic ient ly c o m p l e x - s t r u c t u r e d) a x i o m s e t s , and, for a
given i n t e r e s t i n g a x i o m se t , for m o s t i n t e r e s t i n g t h e o r e m s deduc ib l e f r o m
it . the va lue of x g u a r a n t e e d to e x i s t (whe re x, it wil l be r e c a l l e d , i s the
e a r l i e s t s t ep of the i n s t a n t i a t i o n p r o c e s s at wh ich a t r u t h - f u n c t i o n a l l y un ­
sa t i s f i ab l e s en t ence is obtained) by the t h e o r y is a s i c k e n i n g l y l a r g e
n u m b e r .

An example of th is s i tua t ion was m e t e a r l y in the t e s t i n g of GAMMA I.
The ax iom s y s t e m which was f o r m a l i z e d was tha t for e l e m e n t a r y a b s t r a c t
g roup t h e o r y . The a x i o m s a r e t h r e e in n u m b e r , and s i m p l e - l o o k i n g ("o" is
a b i n a r y functional v a r i a b l e) :

(Ax)(Ay)(Ez)(x = zoy) (l)

(Ax)(Ay)(Ez)(x = yoz) (2)

(Ax)(Ay)(Az)(xo(yoz) = (xoy)oz) . (3)

F r o m these a x i o m s we sought to p rove the t h e o r e m tha t an iden t i ty
e l e m e n t e x i s t s ; indeed, we con ten ted o u r s e l v e s with the w e a k e r t h e o r e m
that t h e r e e x i s t s a left ident i ty e l e m e n t :

(Ex)(Az)(z = xoz) . (4)

A l g e b r a i c a l l y humble though th i s e x a m p l e be , it i s not wi thout s o m e
i n t e r e s t ; the proof of it, whi le not difficult , i s not t r i v i a l e i t h e r . Al l in a l l ,
it was felt tha t it was a r e a s o n a b l e e x a m p l e of a n o n t r i v i a l t h e o r e m which
migh t be within the r ange of GAMMA I.

It is no t . If a p p e a r s , by an a r g u m e n t which wi l l not be g iven h e r e ,
tha t the e a r l i e s t va lue of x to which GAMMA I would have to go in o r d e r to
get a proof of (4) f rom [(l) , (2), (3)] is at l e a s t 57*, o r about 2 . 1 0 ' ^

The i rony of the s i t ua t ion is that , in the couple of t r i l l i o n or so
q u a n t i f i e r - f r e e s e n t e n c e s which GAMMA I would have to g e n e r a t e by i n ­
s t an t i a t ion , only four a r e ac tua l ly r e q u i r e d to p r o d u c e the r e q u i s i t e con ­
t r a d i c t i o n . It IS t h e s e four, t o g e t h e r with a m e r e handful of o t h e r s , wh ich
any good s tudent of m o d e r n a l g e b r a would s e l e c t a s a proof of (4) f r o m
[(1), (2). (3)] .

P r o c e d u r e H is in fact what one m i g h t ca l l an e x h a u s t i o n a l g o r i t h m :
the d e s i r e d ent i ty i s . if it e x i s t s at a l l , c e r t a i n l y a m e m b e r of an e f fec t ive ly

29

enumerable set; very well then, says an exhaustive algorithm, let us list
the set, member by member, and see if the entity turns up. [Actually, the
t e rm 'algori thm' is a misnomer, since the process described will not t e r ­
minate if (a) the enumeration does not terminate (i.e., the set is not finite)
and (b) the desired entity is not in the set.]

The contrast is between methods calling for the examination of
"all" possibil i t ies, on the one hand, and methods which somehow select
from the totality of possibilities a subset thereof which contains only the
likelier possibi l i t ies . Clearly, the second category of methods embraces
those distinguished by their employment of so-called s t ra tegies . At the
very least, such methods are less uniform, more flexible, than exhaustive
methods, and in some sense the flow of events ensuing when such a method
is applied to a part icular problem is very much a function of the specific
propert ies of the part icular problem.

Apart from its being a uniform, exhaustive method, procedure H
also is formulated within a fairly spartan syntactical s t ructure . It is in
fact less easy to "spot" proofs, within the s t ructure operated on by pro­
cedure H, than it is to spot them in the r icher (though not more powerful)
languages in which intuitive deductions are made, and then to t ranscr ibe
them, or otherwise use them, to discover corresponding proofs within the
more austere system.

The next program which is planned, GAMMA II, will embody some
ideas, still somewhat in the formative stage, for selecting paths of in­
stantiation on the basis of the part icular structure of each problem, which
should contain the desired contradiction if indeed there is one contained
in the single, uniform path of instantiation followed by procedure H. This
problem is much eas ier to handle within a system which explicitly contains
functional signs (variables and constants) and which also contains the
identity relation as part of the underlying logical machinery, with associ ­
ated rules of deduction. It already is clear that, for instance, the group
theory problem can be solved by a fairly simple generalization of the in­
stantiation procedure, car r ied out within a language possessing function
signs and the identity relation as a part of its deductive machinery. But
it is not yet clear to what level of difficulty of theorems such a generalized
and r icher procedure will be able to penetrate .

30

31

APPENDIX. THE SYMBOLIC FORTRAN PROGRAM GAMMA I.

1 . Annotated glossary of FORTRAN symbols occurring in GAMMA I.

The following complete alphabetically ordered list of FORTRAN
symbols which occur in GAMMA I, together with the definitions and ex­
planations attached to each, should facilitate the task of understanding the
program listing. In the cases where synonyms occur, they were introduced
into the program because the information they car r ied had sometimes to be
treated as a FORTRAN integer (and as such had to be named by a symbol
beginning with I , J , K , L , M , o r N) and other t imes as a word of "Boolean" infor­
mation, for which a symbol not beginning with I, J, K, L, M, or N is required.

ALIST

ATRIX

FIRST

GEORGE

I MAX

INSTA

INSTB

INSTC

INSTD

ITERAT

JLINE

JUNK

Synonym for LIST.

Synonym for MATRIX.

Used to store the variable which is going to be instantiated;
bit pattern is adjusted so as to be in alignment with first
argument field of the l i tera l .

Used during the construction of LIST in connection with the
tagging of l i terals which are to be deleted from LIST before
LIST is actually used.

General-purpose indexing variable used frequently in a r r a y -
manipulation.

The counter whose value is the highest individual constant
which is used next to instantiate a universally quantified
var iable .

Indicates the location of the matr ix counter of the sentence
being processed, during instantiation procedure.

Indicates the location of the prefix counter of the sentence
being processed, during instantiation procedure.

Indicates the location of the last quantifier of the sentence
being processed, during the instantiation procedure.

Indicates the location of the first l i teral in the sentence being
processed, during the instantiation procedure.

Contains the count of the number of i terations so far, in the
current Davis-Putnam test .

General-purpose index variable, used frequently in a r ray
manipulation.

Contains the number of sentences in MATRIX.

A scratch-pad variable used in assembling word to be d i s ­
played in MQ.

32

K G e n e r a l - p u r p o s e index v a r i a b l e , u s e d f r e q u e n t l y in a r r a y

m a n i p u l a t i o n .

L G e n e r a l - p u r p o s e index v a r i a b l e .

LA Used a s coun te r in the t e s t to s ee how m a n y u n i v e r s a l

q u a n t i f i e r s a r e in p re f ix of s e n t e n c e about to be i n s t a n t i a t e d .

L A P S E D The n u m b e r of m i n u t e s t aken by a c o m p l e t e d p r o b l e m .

LAST Ind i ca t e s the l a s t l i t e r a l in a d i s j un c t i o n , d u r i n g D a v i s -
P u t n a m t e s t .

LASTM I n d i c a t e s l a s t l i t e r a l in a d i s junc t ion , d u r i n g the s o r t i n g
o p e r a t i o n on the d i s j unc t i ons of a s e n t e n c e about to be added
to MODEL.

L A T E R T i m e , in m i n u t e s e l a p s e d s ince p r e v i o u s m i d n i g h t , a t which
a p r o b l e m was f in i shed .

LEAD The 1 2 0 - w o r d - m a x i m u m a r r a y con ta in ing BCD m a t e r i a l of

the c o m m e n t a c c o m p a n y i n g the p r o b l e m .

LEADMX The n u m b e r of BCD w o r d s in the c o m m e n t .

LEAST Ind ica t e s the f i r s t l i t e r a l of a d i s junc t ion , d u r i n g D a v i s -
P u t n a m t e s t .

LEASTM Ind ica t e s f i r s t l i t e r a l in a d i s junc t ion , du r ing s o r t i n g
p r o c e d u r e .

LENGTH The n u m b e r of w o r d s in the m a t r i x of the c u r r e n t s e n t e n c e ;

in i n s t a n t i a t i o n p r o c e d u r e .

LFIRST Synonym of F I R S T .

LGEORGE Synonym of GEORGE .

LINE 2 0 0 0 - w o r d - m a x i m u m a r r a y whose e n t r i e s give the l o c a t i o n s

of the beginnings of s u c c e s s i v e s e n t e n c e s in MATRIX.

LINES Coun te r : n u m b e r of q u a n t i f i e r - f r e e s e n t e n c e s ob t a ined so fa r .

LIST 8 0 0 0 - w o r d - m a x i m u m a r r a y whose e n t r i e s a r e l i t e r a l s which
a r e to be e l i m i n a t e d f r o m MODEL; in D a v i s - P u t n a m t e s t .

LITS C o u n t e r : n u m b e r of l i t e r a l s in a d i s j u n c t i o n ; in D a v i s - P u t n a m
t e s t .

LN Ind ica t e s which s e n t e n c e of MATRIX i s about to be i n s t a n t i a t e d
next .

LNEG Is equa l to z e r o if a l l d i s j unc t i ons in M O D E L con t a in a n e g a t e d
l i t e r a l ; equa l s one o t h e r w i s e .

LOST Ind i ca t e s l a s t l i t e r a l in a d i s junc t ion ; in D a v i s - P u t n a m t e s t .

33

L P H I

L P I V O T

L P O S

LSCOND

L S T U P E

L T E S T

LTHIRD

LUNGTH

LUST

LVALUE

LVBLE

LWORDl

LWORD2

LWORD3

M

MATEND

MATRIX

MAXK

MODEL

MODEND

N

NAXT

H i g h e s t ind iv idua l c o n s t a n t u s e d so far to i n s t a n t i a t e an
e x i s t e n t i a l l y quan t i f i ed v a r i a b l e .

The l i t e r a l to be e l i m i n a t e d by s t e p (6) of D a v i s - P u t n a m
p r o c e d u r e .

Is equa l to z e r o if a l l d i s j u n c t i o n s in M O D E L con ta in an
u n n e g a t e d l i t e r a l ; e q u a l s one o t h e r w i s e .

Synonym of SECOND.

1 0 0 - w o r d - m a x i m u m a r r a y whose i th e n t r y g ives which
s e n t e n c e was l a s t i n s t a n t i a t e d by i th ind iv idua l c o n s t a n t .

C o u n t e r : the n u m b e r of t i m e s the D a v i s - P u t n a m t e s t h a s
been p e r f o r m e d so far in the c u r r e n t p r o b l e m .

Synonym for THIRD.

I n d i c a t e s l o c a t i o n of l a s t l i t e r a l in the m a t r i x p a r t of a
s e n t e n c e ; d u r i n g i n s t a n t i a t i o n p r o c e s s .

I n d i c a t e s the l a s t l i t e r a l of a d i s junc t ion ; in D a v i s - P u t n a m
t e s t i n g p r o c e s s .

Synonym for VALUE .

I n d i c a t e s the ind iv idua l v a r i a b l e with r e s p e c t to which
i n s t a n t i a t i o n wil l be done; du r ing i n s t a n t i a t i o n p r o c e s s .

Synonym for WORDl .

Synonym for WORD2.

Synonym for WORD3 .

G e n e r a l p u r p o s e indexing v a r i a b l e .

Gives the length of the a r r a y MATRIX, v i z . , the to ta l n u m b e r
of w o r d s in the a r r a y .

The 8 0 0 0 - w o r d - m a x i m u m a r r a y con ta in ing al l the s e n t e n c e s
which s t i l l have q u a n t i f i e r s left in t h e i r p r e f i x e s .

Gives the l eng th of the a r r a y LIST.

The 1 8 0 0 0 - w o r d - m a x i m u m a r r a y con ta in ing a l l the quan t i f i e r -

f r ee s e n t e n c e s .

G ives the length of the a r r a y M O D E L .

G e n e r a l - p u r p o s e indexing v a r i a b l e .

I n d i c a t e s the loca t ion of the coun te r i m m e d i a t e l y in front of
a d i s j unc t i on ; in D a v i s - P u t n a m t e s t p r o c e s s .

34

NEXT I n d i c a t e s the l oca t i on of the c o u n t e r i m m e d i a t e l y in f ron t of
a d i s junc t ion ; in D a v i s - P u t n a m t e s t - p r o c e s s .

N E X T M I n d i c a t e s the l oca t i on of the c o u n t e r i m m e d i a t e l y in f ron t of
a d i s junc t ion in the s o r t i n g p r o c e s s .

NOW The t i m e , in m i n u t e s e l a p s e d s i n c e p r e v i o u s m i d n i g h t , a t
which a p r o b l e m is begun .

NOXT I n d i c a t e s the loca t ion of the c o u n t e r i m m e d i a t e l y in f ront of
a d i s junc t ion ; in D a v i s - P u t n a m p r o c e s s .

O D E L Synonym for M O D E L .

SECOND Used to s t o r e the v a r i a b l e which is going to be i n s t a n t i a t e d
upon; bit p a t t e r n is ad jus t ed so a s to be in a l i g n m e n t with the
second a r g u m e n t f ield of the l i t e r a l .

THIRD Used to s t o r e the v a r i a b l e which i s going to be i n s t a n t i a t e d
upon; bi t p a t t e r n is ad jus t ed so a s to be in a l i g n m e n t with the
a r g u m e n t field of the l i t e r a l .

VALUE The ind iv idua l c o n s t a n t which is going to be u s e d for i n s t a n t i ­
a t ion , with bit p a t t e r n ad jus t ed so a s to be in a l i g n m e n t with
f i r s t a r g u m e n t field of l i t e r a l .

VALUE2 The indiv idual cons t an t which is going to be u s e d for i n s t a n t i a ­
t ion, with bit p a t t e r n ad jus t ed so a s to be in a l i g n m e n t with
second a r g u m e n t field of l i t e r a l .

VALUE3 The indiv idual cons t an t which is going to be u s e d for i n s t a n t i a ­
t ion , with bit p a t t e r n ad ju s t ed so a s to be in a l i g n m e n t with
t h i r d a r g u m e n t field of l i t e r a l .

WORDl The con ten t s of the f i r s t a r g u m e n t f ield of a l i t e r a l , con tex t
s t r i p p e d away .

WORD2 The con ten t s of the s econd a r g u m e n t f ield of a l i t e r a l , con tex t
s t r i p p e d away .

WORD3 The con ten t s of the t h i r d a r g u m e n t f ield of a l i t e r a l , con tex t
s t r i p p e d away .

[X,Y,Z] T h r e e BCD w o r d s which s t a t e the da te and t i m e , w h e n e v e r
the s u b r o u t i n e MINUTE is c a l l e d in . No u s e is a c t u a l l y m a d e
of t h e s e t h r e e v a r i a b l e s beyond t h e i r funct ion a s the d u m m y
v a r i a b l e s in the ca l l ing l ine of the s u b r o u t i n e .

2. Listing of GAMMA I FORTRAN Synnbolic program, with explanatory comments.

35

C..«»...........,,.,„....,,.......•»••••••••••»••••••••••*»*••*»***••»•
C» GAMMA I. A GENERAL THEOREM-PROVING PROGRAM. •
C«*>>>••••*•**.......>...*..>«•••••••*>•••* »...»..........#........

DIMENSION MODEL(18000),ODELt18000),MATRIX(8000).ATRIX(8000),
1 LINE(2000),LSTUPE(100),LIST(8000),ALIST(8000),LEAD(120)
EQUIVALENCE (VALUE,LVALUE),(WORDl,LWORDl),(W0RD2,LW0RD2),
1(WORD3,LWORD3),(MATRIX,ATRI X,LI ST,ALI ST),(MODEL,ODEL),
2(FIRST,LFIRST),(SECOND,LSCOND),(THIRD,LTHIRD),(GEORGE,LGORGE)

C>•*••>*>•••»•«•••.< ,...»..........•..................*..........•
f OBTAIN INPUT FOR NEXT PROBLEM FROM CARD READER. •
C>>>«<> ••••*>*••••••«•••>••••••••••••••••••••>•••*>•*>••>••>••••• ••**«••••

1 READ 1200, MATEND,JLINE.LPHI,LEADMX
READ 1201,(LEAD(I),1=1.LEADMX)
READ 1001,(LINEII),1=1,JLINE),(MATRIX(I),I=1,MATEND)

C•••••>••••««•*•••* ».
C» FIND OUT WHAT TIME IT IS. *
C>>«>»•>••*•••••>**•*«>•>••>•••••*••*•••••*>*•>••**>•*«••>•••••••>••>••«

NOW = MINUTE(X,Y,Z)
C .•..»...........#....,.#.......».................»................
C» INITIALIZE THE COUNTERS WHICH WILL GROW, AND BE SURE ALL THE •
C» SENSE LIGHTS ARE TURNED OFF. •
C* >•••••••••<,<,»•••*•.•*..>....•*•.*•*.••*>••<,.••..>••*••*•••••••• ••••••*

SENSE LIGHT 0
U LSTUPE(l) = 0

LINES = 0
LTEST = 0
MODEND = 0
IMAX = 1

C«»»»»•»»••»••»*•••••••••••••*•*»•»•••»*»»••••»*»»••••»••»*•••••*•••**••
C» TRY INSTANTIATING A SENTENCE WITH 1. •
C»»»••»•••••••••»••••»•»••••*•«••••••••••••••••»»•»»•••»••••••••••»»*•••

5 INS = 1
C»»»«»•••••»••».••.»»»••••»••••••••••••••••••••••••••••«••*•»«•*•••**«••

C* SET UP THE LATEST PROGRESS REPORT IN THE MO CONSOLE NEONS. »
C>***»*>•>••••••<»«•*•*•>••«•*•••***•••••••••••••••••••>*•••••••••••••••
S CLA LINES
S ARS 18
S ADD JLINE
S STO M
S LDQ M
C«>**><>«».>.•>•>«>•••*•***••*••••**•••• >••*•••*••••
C» QUIT IF FORCED TO DO SO. *
c » » » . . . » » » » * » » • » . • • • • • • • • » • • • • • • » • • • • • * * • * • • • * • » • . • • • .

IF (SENSE SWITCH 2) 1900,6
C.»••..........•.•.•.••»•••••••••»••••»«•*••••***••****••** ».»••••

C» CAN ANY SENTENCE BE INSTANTIATED WITH INS, WE ASK. •
C>><»*>**><0«>>«>>> ...,,...........»..•.»•.••••»*•••••••«•••••••**

6 IF (LSTUPE(INS) - JLINE) 9,7,9
C».......•...«••.»••»»•••••••«••••••»•••*•**•*****• ..»....•»...•.

C« IF NOT, STEP UP INS, AND THEN UNLESS INS IS NOW UP TO TESTING •
C» SIZE, GO SEE WHETHER WE CAN INSTANTIATE A SENTENCE WITH THIS *
C» HIGHER VALUE. IF INS IS UP TO TESTING SIZE, GO REPORT TO STATEMENT •
C» 8000, WHERE THE MATTER WILL BE MORE CLOSELY PURSUED. *
c « . . • » • • • • • • • • » • • * • • • • * • • * * • * * * • * * • * * • * • * * * • » * * * * * * * * * * * • * * * * * * * * * * * • • * •

0000
0001
0002
0003
OOOM
0005
0006
0007
0008
0009
0010
0011
0012
0013
0011)
0015
0016
0017
0018
0019
0020
0021
0022
0023
0021*
0025
0026
0027
0028
0029
0030
0031
0032
0033
003U
0035
0036
0037
0038
0039
OOUO
OOUI
001i2
00ii3
OOUU
001(5
00l»6
00U7
O0U8
001*9
0050
0051
0052
0053

36

7 INS = INS + 1 0051
IF (INS - IMAX) 6,6.8000 0055

C><>.< •••>••••>• 0056
C. WE "AY PROCEED. EVIDENTLY. THE TESTING CRISIS MUST BE OVER. • 0057
C*»•........•......»*...••».•«.*.•*..»..**»•••*••*••*..........**••••*•* 0058

B LSTUPE(INS) = 0 0059
IMAX = INS 0060
GO TO 6 C06 1

C...*"**»•*•*••********••*•••*** 0062
C KE CAN INSTANTIATE WITH INS. SET UP THE SENTENCE DUE FCR • C063
C» INSTANTIATION WITH INS. * C06't
C............................»........»•.*•»••*•*•*•*•**••••**********•* 0065

9 LSTUPE(INS) = LSTUPE(INS) • 1 0066
LN = LSTUPEI INS) 0067
INSTA = LINE(LN) 0068
INSTB = MATRIX(INSTA) + INSTA + 1 0069
INSTC = MATRIXfINSTB) + INSTB 0070
LVBLE = XABSFIMATRIXIINSTC)) 0071
INSTD = INSTB + 1 0072

C. 0073
C. WAIT. IF WE INSTANTIATE THIS SENTENCE, WE WANT TO KNOW WHETHER . 0071)
C» WE WILL WIND LP WITH A CUANTIFIER-FREE SENTENCE OR NOT. IF THIS . 0C75
C. SENTENCE HAS LESS THAN TWO UNIVERSAL QUANTIFIERS IN ITS PREFIX. . 0076
C. THE RESULT CF INSTANTIATION WILL BE A OUANTIF 1ER-FREE SENTENCE. . 0077
C* SO WE COUNT THE NUMBER CF UNIVERSAL QUANTIFIERS IN THE PREFIX.... . 0078
C........•••. 0079

LA = 0 0080
DO 11 K = INSTD. INSTC 0081
IF (MATRIXIK)) 11. 10, 10 0082

10 LA = LA + 1 0083
11 CONTINUE 00811

C*....»«»...*«...«...................*.................................. 00B5
C.AND IF THERE ARE LESS THAN TWO WE PREPARE TO ADD THE RESULT » 0086
C. TO MODEL.... . 0087
C.......*.*.....................*........................«....*......«.. 0088

IF (LA - 2) lit, 12, 12 0089
12 M = MATEND 0090

C... 0091
C* ...BUT IF THERE ARE TWO OR MORE WE PREPARE TO ADD THE RESULT TC . 0092
C. MATRIX... . C093
C... 0091+

DO 13 N = INSTA, INSTC 0095
M = M + 1 0096

13 MATRIX(M) = MATRIX(N) 0097
C........ 0098
C. ...AND DEPART FOR STATEMENT 38 WHERE THIS WILL BE DONE. . 0099
c * 0100

INSTB = "ATENC + MATRIX(INSTA) + 2 0101
INSTA = MATEND + 1 0102
LVALUE = INS 0103
GO TO 38 OlOU

C...».......»«»...*.»*............ 01 05
C. SET UP ON TO THE END OF MODEL THE SENTENCE TO BE INSTANTIATED. . 0106
C.. 0107

37

1U M = MODEND 0108
LENGTH = MATRIXIINSTA) 0109
INSTC = INSTA + 1 0110
DO 15 N = INSTD,INSTC 0111
M = M t 1 0,,2

15 MODELIM) = MATRIX(N) 0113
INSTR = MCDEND + MATR IX (I NSTA) *• 1 0 I 1 It
INSTA = MCDEND + 1 0115

16 LVALUE = INS 0116

C GET RIO CF ALL THE EXISTENTIAL QUANTIFIERS AS WELL AS THE . 0118
c. UNIVERSAL QUAN T I F I E R . . 0119
C.............................. ,.. 0,20

0121
0122
0123
CI211
0125
0126
0127
0128
0129
0130
0131

S 17 CLA LVBLE
S STO FIRST
S ARS 9
S STO SECOND
S ARS 9
S STO THIRD
S CLA LVALUE
S ARS 9
S STO VALUE2
S ARS 9
S STO VALUE3

B FIRST = FIRST + OOOitOOOOOOCO 0132
B SECOND = SECOND + COOOOOitOOOOO 0133
B THIRD = THIRD * COOOOOCOOI4OO 013U

DO 23 L = INSTA, INSTB 0135
B WORDl = ODEL(L) . 000777000000 0136
B WCR02 = ODELIL) . 00C0C077700O 0137
B W0RD3 = CCEL(L) . 000000000777 0138

IF (LWORDl - LFIRST) 19, 16, 19 0139
B 18 ODEL(L) = ODEL(L) . 777000777777 + VALUE OIUO

19 IF (LW0RD2 - LSCOND) 21, 20, 21 OIUI
B 20 CCEL(L) = ODELIL) . 777777000777 + VALUE2 0)1*2

21 IF (LK0RD3 - LTHIRD) 23, 22, 23 0Iit3
B 22 ODELIL) = ODELIL) . 777777777000 + VALUE3 01UU

23 CONTINUE OlitS
MODELIINSTB) = MCDEL(INSTE) - 1 011t6
LASTM = MCDEL(INSTB) + INSTB 011(7
IF (MODELI INSTB)) 25, 25. 2U Cliie

21* LVALUE = LPHI + 1 011*9
LPHI = LVALUE 0150
LVBLE = XABSF(MODEL(LASTM)) 0151
GO TO 17 0152

25 LASTM = INSTA - 1 0153
LUNGTH = MODEND + LENGTH 0151*

C... 0155
C PRINT CUT THE RESULT IF REQUESTED. » 0156
C... 0157

IF (SENSE SWITCH 3) 252. 251 0158
252 PRINT 1001(. LVALUE. (MODEL (N) ,N= I NSTA . I NSTB) 0159

C......*....•....•.».........»...................*...*•»................ 0160
C SORT EACH DISJUNCTION WITHIN THE NEW QUANTIFIER-FREE SENTENCE. . 0161

38

C 0162
251 NEXTM = LASTM + 1 C163

IF (NEXTM - (MODEND •* LENGTH + D) 26. 35, 35 C161(
26 LEASTM = NEXT" + 1 0165

LASTM = MODELINEXTM) + NEXTM 0166
K = LASTM - 1 0167
IF (MODEL(NEXTV) - 1) 251, 251, 27 0168

27 DO 31 L = LEAST*-, K 0169
IF(XAESF(M0DEL(L1) - XAPSF(MODEL(L + 1))) 31, 29, 28 0170

28 " = MODEL(L + 1) 0171
MODEL (L + 1) = MODEL(L) 0172
"ODEL(L) = M 0173
SENSE LIGHT 1 0171*
GO TO 31 0175

29 IF {MODEL(L) + •'OnEL(L + 1)) 30, 32, 30 0176
30 MODEL(L) = 0 0177

MODELINEXTM) = "OCEL(NEXTM) - 1 0178
31 CCNTir:uE 0179

IF (SENSE LIGHT 1) 27, 251 0180
32 IF(MOCEL(L)) 33. 31. 33 0181

C..... 0182
C. IF A DISJUNCTION IS LOGICALLY TRUE, DELETE IT. . 0103
C..» 0181*

33 DO 31(L = NEXTM, LASTM C1P5
3i("ODELIL) = C C186

GO TC 251 0187
C . . . 0188
C. PACK rOVN THE POSSIBLY DEPLETED SENTENCE. . 0189
C..................................*.............><,...••«............... 0190

35 CO 37 N = INSTA,LUNGTH 0191
IF (MODEL(N)) 36, 37, 36 0192

36 "ODENC = MCDEND + 1 0193
MCDFLIMODEND) = MODEL(N) Ol?"*

.'57 CONTINUE 0195
C............. 0196
C. PRINT IT CUT IF REQUESTED. . 0197
C.....«.*........».. 0198

IF (SENSE SWITCH 3) 371, 372 0199
371 PRIrjT 1006, MODEND 0200

PRINT 1000, (MODEL(N), N=INSTA,MODEND) 0201
372 CONTINUE 0202

Co... 0203
C QUIT, IF WE ARE OUT CF CAPACITY FOR MODEL. OTHERWISE, GO . 0201*
C. INSTANTIATE THE NEXT SENTENCE. . 0205
C......................»................,.,....,,,......,,.,,,.,...,,... 0206

LINES = LINES + 1 0207
IF (MODEND - 17950) 5, 1900, 1900 0208

C.................. 0209
C. INSTANTIATE THE LEADING UNIVERSALLY QUANTIFIED VARIABLE, ANC ANY . 0210
C. EXISTENTIAL QUANTIFIERS WHICH ARE THEREBY EXPOSED. . 0211
C.,,.......„,,..,„,„,,. 02)2
S 30 CLA LVBLE 0213
S STO FIRST 021U
S ARS 9 0215

39

S STO SECOND 0216
S ARS 9
S STC THIRD
S CLA LVALUE 02i9
S ARS 9
S STO VALUE2
S ARS 9
S STC VALUE3
B FIRST = FIRST + 0001(00000000

0217
0218

0220
0221
0222
0223
022U

B SECOND = SECOND *• 0000001(00000 0225
B THIRD = THIRD + COCOCOOOOUCO 0226

DO 1(1* L = INSTA, INSTB 0227
B WORDl = ATRIX(L) . 000777000000 0228
B W0RD2 = ATRIX(L) . 000000777000 0229
B W0RC3 = ATRIX(L) . 000CCC000777 0230

IF ILWORDl - LFIRST) UO, 39, 1(0 0231
B 39 ATRIX(L) = ATRIX(L) . 777000777777 + VALUE 0232

itO IF (LWCRD2 - LSCCND) it2, UI, lt2 0233
B ltl ATRIX(L) = ATRIX(L) • 777777000777 + VALUE2 0231*

h? IF (LW0RD3 - LTHIRD) kh, 1(3, UU 0235
B 1(3 ATRIX(L) = ATRIX(L) . 77777777700C + VALUE3 0236

ItM CONTINUE 0237
MATRIXIINSTP) = MATRIX(INSTB) - 1 0238
"ATEND = MATRIX(INSTP) t INSTB 0239
IF (MATRIXIWATENCI) 1*5,1(6,1*6 021*0

lt5 LVALUE = LPHI + 1 021*1
LPHI = LVALUE 02U7
LVBLE = XABSF(MATRIX(MATEND)) 021(3
IF (MATEND - 7750) 38, 1900,1900 021(i(

1*6 JLINE = JLINE *• 1 021i5
LINE(JLINE) = INSTA 021(6

C... 021(7
C. PRINT OUT THE RESULT. IF REQUESTED. . 021(8
C... 021*9

IF (SENSE SWITCH 31 1(61. 1(62 0250
1(61 PRI'.T 1005, JLINE,LINE(JLINE),LVBLE.LVALUE 0251

PRINT lOCC. (MATRIX(N),N=INSTA,MATEND) 0252
1*62 CONTINUE 0253

C... 0251*
C QUIT IF CAPACITY IS EXCEEDED. OTHERWISE GO INSTANTIATE THE NEXT • 0255
C SENTENCE. . 0256
C... 0257

IF (JLINE - 2000) 5. 1900.1900 0258
C... 0259
C STATEMENTS PO THRU 21t0 •>• 3 COMPRISE THE DAVIS-PUTNAM TEST PROCESS. . 0260
C................... 0261

80 LTEST = LTEST t 1 0262
ITERAT = 0 C263

C».............••.........•.........................*.•••.*••«.••....... 026U
C» WE RETURN HERE FOR EACH NEW ITERATION. HERE WE FIRST INITIALIZE . 0265
C. THE NECESSARY COUNTERS AND TESTING VARIABLES. . 0266
C......................... 0267
7115 LNEC = 0 0268

LPOS = 0 0269

40

I T E R A T = I T E R A T + 1

K = 0

L A S T = 0
c...
C. DISPLAY THE LATEST PROGRESS REPORT CN THE MQ CONSOLE NEONS. •
c.................*........................*.....••*...•............*...
S CLA ITERAT
S ARS 18
S ADD MODEND
S STO JUNK
S LDQ JUNK
C...
C. PRINT OUT MODEL AS IT NOW STANDS. IF REQUESTED TO DO SO. .
C...

IF (SENSE SWITCH 1) 3339. 110
3339 PRINT 3997

PRINT 3001. MODEND
PRINT 1001. (MODEL(I).1=1, MODEND)

C.........*..•.*....*....
C. MAKE A LIST OF ALL THE UNIT DISJUNCTIONS, I.E., THOSE CONTAINING .
C. ONLY ONE LITERAL. .
C.................•........................••.•••••••••«••••>*.•••«**...

110 NEXT = LAST + 1
IF (NEXT - MODEND) 120, 130, 130

120 LEAST = NEXT + 1
LAST = MODEL(NEXT) *• NEXT
IF (MODEL(NEXT) - 1)I 00, 1UO,100

lUO K = K + 1
LIST(K) = MCDEL(LEAST)

C...».*...............
C AS EACH NEW UNIT DISJUNCTION IS ADDED TO THE LIST, CHECK IT AGAINST.
C. THE EARLIER ONES TO SEE IF IT CONTRADICTS ANY OF THEM. IF IT DCES,.
C» TERMINATE INCONSISTENT. .
C...

DO 50 N = 1, K
IF (LIST(N) + LIST(K)) 50,250,50

50 CONTINUE
C...............••.........*..
C SINCE WE ARE SCANNING ALL OF MODEL ANYWAY, LET US CHECK TC SEE IF .
C (A) EACH DISJUNCTION CONTAINS AN UNNEGATED LITERAL, OR (B) EACH .
C. DISJUNCTION CONTAINS A NEGATED LITERAL. .
c•................>....>.................

100 DO 106 J = LEAST, LAST
IF (MODEL(J)) 101, 106, 102

101 SENSE LIGHT 1
GO TO 106

102 SENSE LIGHT 2
106 CONTINUE

IF (SENSE LIGHT 1) 108, 107
107 LNEG = I
108 IF (SENSE LIGHT 2) 110, 109
109 LPOS = 1

GO TO 110
C...............................,.,,,.,.,,.,,,,,,,,,,,,.,.,.........^

0270
0271
0272
0273
027U
0275
0276
0277
0278
0279
0280
0281
0282
0283
028U
0285
0286
0287
0288
0289
0290
029 1
0292
0293
029U
0295
0296
0297
0298
0299
0300
0301
0302
0303
030U
0305
0306
0307
0308
0309
0310
0311
0312
0313
0311*
0315
0316
0317
0318
0319
0320
0321
0322
0323

41

C» IF EITHER (A) OR (B) IS THE CASE, WE TERMINATE CONSISTENT. . 032U
C OTHERWISE, IF WC HAVE ANY UNIT DISJUNCTIONS AT ALL ON THE LIST, . 0325
C SET UP THE SITUATION TO DELETE THE FIRST OF THEM. • 0326
C 0327

130 IF (LPOS) 131. 260. 131 0328
131 IF (LNEG) U997. 260. U997 0329

U997 IF (K)132.132.U998 0330
U99e MAXK = I 0331

GO TO 1U12 0332
C. 0333
C. IF WE HAVE NO UNIT DISJUNCTIONSLET US MAKE A LIST OF PURE LITERALS.. 033U
C* A LITERAL IS SAID TC BE PURE IF EITHER ALL ITS OCCURRENCES IN THE . 0335
C. MODEL ARE UNNEGATED OR ALL ARE NEGATED. . 0336
0... 0 3 37

132 MAXK = 0 0338
K = 0 0339
LAST = 0 03U0

C.. 03U1
C. TURN ON THE SIGN BIT IN MC. . 03U2
Q... G3U3
S STQ JUNK 03UU
S CLA JUNK 03U5
S SSM 03U6
S STO JUNK 03U7
S LDC JUNK 03U8
C......*........«.............*..........*.............*............*.*. 03U9
C. IF WE FIND THAT A LITERAL IS MIXED, I.E., NOT PURE, WE OMIT IT » 0350
C. FROM THE LIST. BUT WE PUT A LITERAL ON THE LIST AS BEING PURE, * 0351
C. UNTIL IT IS PROVED TO BE MIXED. WHEN WE FIND THAT A LITERAL IS . 0352
C. MIXED, WE TAG ITS OCCURRENCE IN LIST (BY PUTTING A BINARY ONE IN . 0353
C. IN THE SECOND BIT POSITION) SC AS TO KNOW IT MUST BE LATER . 035U
C. REMOVED FROM THE LIST. » 0355
C...•• *•••• 0356
8300 NEXT = LAST + 1 C357

IF (NEXT - MCDEND) 8301, 8320, 8320 0358
8301 LEAST = NEXT + 1 0359

LAST = MODEL(NEXT) + NEXT 0360
DO 8303 I = LEAST, LAST 0361
DO 8302 J = 1, MAXK 0362

B GEORGE = ALIST(J).577777777777 0363
IF (LGORGE - MODEL(I)) 8305,8303,8305 036U

8305 IF (LGORGE + MODEL(I)) 8302,830U,8302 0365
Be30U ALIST(J) = ALIST(J) + 20C000000000 0366

GO TO 8303 °\^l
8302 CONTINUE " ° °

MAXK = MAXK + 1 °^°'
LIST(MAXK) = MODEL(I) °iL°

0372
0373

8303 CONTINUE
GO TO 8300

c........................*••*•»••••**•*•*••**•*************************
C* DELETE FROM THE LIST ALL THE LITERALS WHICH ARE TAGGED. * 037U
r.....................*......******************************** *********** 0375
8320 DO 8325 1 = 1,MAXK " ^ '

B GEORGE = ALISTI I)*200000000000 " ' "

42

IF (LGORGE)
832U LISTI11=0
8325 CONTINUE

C<«tt»«»**««»**«««»

c THEN PACK DOWN

c...............»»
J = 0
DO 8330 I =
IF (LISTd))

8327 J = J *• 1
LIST(J) = LI

8330 CONTINUE
C*
C
C

c.
c.

c»
c
c.
c.

................
IF WE THEREBY '
IN MODEL ARE M
GO TO THE DELE

«...»....«...»..
MAXK = J
IF (MAXK) 16

................
INITIALIZE, PR
SEE WHETHER LI
NEGATIONS OF L

c....»«...........
1U12 LAST = 0

c.....»*.......»»»
c.
c»
s
s
s
s
s

TURN CFF THE S

................
STC JUNK
CLA JUNK
SSP
STO JUNK
LDC JUNK

C« * • • * « « ff*-********

c.
c*

PREPARE TO SCAI

................
1U11 NEXT = LAST

IF (NEXT - M
1U2 LEAST = NEXT

LAST = MODEL
c....»»*.».»...»..
c»
c.
c*

IF THE DISJUNC
LIST, DELETE T

................
CO 1U3 J = L
DO 1UU K = 1
IF (MODEL(J)

1U5 IF (MCDEL(J)
1U6 MODEL(J) = 0

MODEL(NEXT)
GO TO 1U3

c»...».».........*
c.
c

IF THE DISJUNC
ENTIRE DISJUNC

..............

8325.8325,832U

........................*....****»•**
THE LIST TO REMOVE ANY GAPS.

....»•......»...........*..*»*»******»**************•

1, MAXK
8327, 8330, 8327

ST(I)

h »......«
WIND UP WITH AN EMPTY LIST (SC THAT ALL THE LITERALS
IXED) WE GO TC THE BLASTING PROCEDURE. OTHERWISE WE
TION PROCEDURE.

0, 160, 1U12
.................*..........«.........
EPARATORY TO SCANNING EACH DISJUNCTION IN MODEL TO .
TERALS OCCUR IN THEM WHICH ARE ON LIST, OR WHICH ARE .
ITERALS WHICH ARE ON LIST. »
..

...............
IGN BIT IN fC

.............

..........

N THE NEXT DISJUNCTION.
..
• 1
ODEND) 1U2, 150, 150
t 1
(NEXT) + NEXT
..
TION CONTAINS THE NEGATION OF A LITERAL WHICH IS
HAT NEGATION FROM THE DISJUNCTION.
..
EAST, LAST
, MAXK
- LIST(K)) 1U5, 1U7. 1U5
+ LIST(K)) lUU, 1U6. lUU

= M00EL(NEXT1 - 1

...
TION CONTAINS A LITERAL WHICH IS ON LIST, DELETE
TION.

......

.̂....
CN .

.......

.....
THE .

0378
0379
0380
0381
0382
0383
038U
0385
0386
0387
0388
0389
0390
0391
0392
0373
039U
0395
0396
0397
0398
0399

ouoo
0U01
CU02
0U03
ouou
0U05
0U06
0U07
0UC8
0U09
OUIO
OUll
0U12
GUI 3
CU1U
0U15
0U16
0U17
CU18
0U19
0U20
0U21
0U22
0U23
0U2U
0U25
CU26
0U27
0U28
0U29
0U30
0U31

43

C*..... 0U32
1U7 DO lUR M = NEXT, LAST 0U33
lUS "ODEL(M) = 0 0'*3'l

CO TC lUl1 0U35
lUU CONTINUE 0U36
1U3 CONTINUE 0U37

GO TO 1U11 0U38
C... 0U39
C. THE DELETION PROCESS BEING OVER, PACK DOWN MODEL SO AS TO CLOSE UP • OUUO
C. ANY GAPS. . OUUl
C... 0UU2

150 J = 0 0UU3
DO 15U I = I, MCDFND CUUU
IF (MOOELID) 153, 15U. 153 0UU5

153 J = J • 1 0UU6
MODEL(J) = MODEL(I) 0UU7

151* CONTINUE 0UU8
MCDFND = J 0UU9

C»...........».*..........................»............................. 0U50
C* IF THE ENTIRE MODEL HAS VANISHED, TERMINATE CONSISTENT, OTHERWISE . 0U51
C. RETURN FOR ANOTHER DAVIS-PUTNAM ITERATION. . 0U52
C...••>.....*............**..*.. 0U53

IF (MODEND) 260.260.7115 0U5U
C...................«..................*........... 0U55
C. IT IS NECESSARY TO APPLY STEP (6) OF THE DAVIS-PUTNAM PROCESS, ANC . 0U56
C. BLAST CUT A LITERAL FROM MODEL. WE CHOOSE THE FIRST LITERAL IN THE . 0U57
C. FIRST DISJUNCTION AS THE PIVOTAL LITERAL TO BE BLASTED CUT. « 0U58
C...******* ************* 0U59

160 LPIVOT = M0CEL(2) OkbO
K = MODEND Oiib\
LAST = 0 0U62

C........................•......***•*****•*****••*******•*•*******•***•* 0'*<̂ 3
C* SEARCH FC^ THE NEXT DISJUNCTION WHICH CONTAINS AN UNNEGATED » 0U6U
C. OCCURRENCE OF THE PIVOTAL LITERAL. » 01*65
C................................*•*•*********************************** 0U66

200 NEXT = LAST *• 1 0'*'̂'̂
IF (NEXT - MCDEND) 208, 210, 210 0U68

208 LEAST = NEXT + 1 O***'
LAST = MODEL (NEXT) + NEXT 01*70
DO 201 M = LEAST. LAST 0U71
IF (MOOEL(M) - LPIVOT) 201, 202, 201 0072

0U73
0U7U
0U75

201 CONTINUE
GO TO 200

C. HAVING FOUND SUCH A DISJUNCTION (CALL IT A) , PREPARE TC FIND . CU76
C. EACH DISJUNCTION IN MODEL WHICH CONTAINS AN OCCURRENCE OF THE . 0U77
C NEGATION OF THE PIVOTAL LITERAL. * 0U78
c . * * * * * * * * * * • * • * * * * * * * * * * * * * * * * * "

202 LOST = 0 . . , . , . . . ,

c ' * * S E A R C H * F O R * T H E * N E X T DISJUNCTION WHICH CONTAINS AN OCCURRENCE CF . 01*82

C* THE PIVOTAL L I T E R A L . ^ "
c » . *

203 NAXT = LOST <• 1

0U79
0U80
0U81

CU83
0U8U
OURS

44

IF (NAXT - MODEND) 207, 200, 200 0Ua6
207 LUST = NAXT + 1 0U87

LOST = "ODELINAXT) + NAXT 0U88
DO ?0U N = LUST, LOST 0U89
IF (MODEL(N) *• LPIVOT) 2CU, 205, 20U 0U90

20U CONTINUE 0U91
GO TC 203 0U92

C............ CU93
C. HAVING FOUND THE NEXT SUCH DISJUNCTION, (CALL IT B) WE NOW MERGE . 0U9U
C. A WITH B, DELETING ANY DUPLICATIONS OF LITERALS IN THE RESULT, . 0U95
C. AND DELETING THE WHOLE DISJUNCTION IF TWO CCNTRADICTORY LITERALS . 0U96
C SHOW UP, ONE FROM A AND THE OTHER FROM B. IF THE LENGTH CF MODEL » 0U97
C EXCEEDS CAPACITY DURING THIS PROCESS, TERMINATE BY FLEEING TO . 0U98
C. STATEMENT NL"EER 1900. STATEMENTS 17U THRU 231 INVOLVE INTRICATE » 0U99
C HCUSEKEEPINC CHORES CONNECTED WITH THIS MERGING OPERATION. . 0500
C..........».***.*»...............»........*•»....»».................».. 0501

205 NOXT = K + 1 0502
K = NOXT 0503
I = LEAST 050U
J = LUST 0505
LITS = 0 0505

191 IF (I - LAST) 190, 190, 193 0507
190 IF (J - LOST) 169, 169, 195 0508
169 IF (XABSF(MOCEL(I)) - XABSF(MODEL(J))) 1692, 170, 171 0509
170 IF (MCDEL(I) + MODEL(J)) 172, 173, 172 0510
173 IF (MODEL(I) - LPIVOT) 175, I7U, 175 0511
175 K = NOXT - I 05,2

GO TO 203 0513
17U I = I *• 1 051U

J = J + 1 0515
GO TO 191 0516

172 J = J *• 1
1692 K = K + 1

0517
0519

IF (K - 18000) 1691, 1691, 1900 0519
1691 LITS = LITS *• 1 0520

MCDFLIK) = MODEL(I) 0521
I = I t 1 2522
GO TO 191 C523

171 K = K + 1 £j52̂
IF (K - leoOOl 1711, 1711, 1900 0525

1711 LITS = LITS + 1 0526
MODEL(K) = M0DEL(J1 0527
J = J + 1
GO TO 191

193 IF (J - LOST) 1933, 1933, 197
1933 DO 19U N = J, LOST

K = K • 1
IF (K - laOOO) 1931. 1931. 1900

1931 LITS = LITS + 1
19U MODEL(K) = MODEL(N)

GO TO 197
195 IF (I - LAST) 1953. 1953, 197
1953 DO 196 " = I. LAST

K = K t 1

0528
0529
0530
0531
0532
0533
053U
0535
0536
0537
0538
0539

45

IF (K - 1B0C0) 196. 196. 1900 05U0
196 MODEL{K) = MCDEL(M) 05U1
197 MOCCL(NOXT) = LITS 05U2

M = 0 05U3
198 N = M t 1 C5UU

IF (N - MCDFND) 199. 203. 203 05U5
199 L = N + 1 05U6

" = MCDEL(N) + N 05U7
IF (MCDEL(N) - McnEL(NOXT)) 230. 198. 230 05UR

230 J = NOXT + 1 C5U9
CO 231 I = L." 0550
IF (MCDEL(I) - "ODELIJ)) 198. 232. 198 C551

232 J = J + 1 0552
231 CONTINUE C553

GO TC 175 055U
C... 055 5
C. SET UP THE NEW DIS JUNC TI Or: S SC THAT ONE PASS THROUGH THE DELETION . 0556
C' PROCESS WILL ELIMINATE EACH DISJUNCTION WHICH. IN THE OLD MODEL. . C55''
C. CONTAINED EITHER! THE PIVOTAL LITERAL OR ITS NEGATION. THEN » 0553
C. PROCEED TO THE CELETICN PRCCESS. » 0559
C... C5 6C

210 "CDEND = K C561
DC 2UC 1 = 1 . MCCENC C562
IF (MCDEL(I) + LPIVCT) 7U0. 7U1. 2UC 0563

2U1 "CDEL(I) = LPIVOT C56U
2U0 CONTINUE 0565

LISTI 1) = LPIVOT 0566
MAXK = 1 0567
GO TO 1U12 0568

C... 056 9
C. WE HAVE COME HERE BECAUSE THE INSTANTIATION PROCEDURE HAS REACHED . 0570
C. A DAVIS-PUTNAM -rgsiNG POINT. IF WE ARE IN MANUAL "ODE. WITH NC « C571
C REQUEST FOR A TEST. WE RETURN TO THE INSTANTIATION PROCESS. • 0572
C» OTHERWISE WE FIRST DETERMINE WHETHER THE UPCOMING TEST WILL RE » 0573
C. THE LAST. SAVE MCDEL AND MATRIX. AND SEND CONTRCL TO THE DAVIS- . 057U
C* PUTNA" TESTING "ROCESS. * C575
C.«.».....».«......»...«.....*........***.•......*******•*»•»•********•* 0576
8000 IF (SENSE SWITCH h) 800U.8003 0577
eoOU IF (SENSE S!-,ITCH 5)8003,8 0578
8003 WRITETAPE3,(MODEND, ("ODEL (I) , I = 1 . MODEND) . (MATR I X (I) . I = 1. MATENC)) 0579

IF (INS - LPHI) 80.80.8001 0580
8001 SENSE LIGHT U 0581

GO TO 80 OS''^
C...........................*•****•**** 0583
C. THE PROBLEM IS CONSISTENT. OUTPUT TO ON-LINE PRINTER AND TAPE 2. • 058U
C. AND RETURN FCR THE NEXT PRCRLEM. * 0585

260 BACKSPACE 3
R
IF (SENSE LIGHT U) 8002.8

8002 LATER

0586
0587

EADTAPE3.(MCDEND.(MODEL(I),I=1.MODEND).1MATRI X(I).1=1,MATENC)) 0588
0589

MINUTE(X,Y,Z) ?5?9
0591 LAPSED = LATER - NOW

PRINT 12C2,(LEAD(I1,1=1.LEADMX) 0592
PRINT 121C °̂ '-̂

46

PRINT 120U,LAPSED 059U
WRITE OUTPUT TAPE 2,120?,(LEAD(I),I=1,LEADMX) 0595
WRITE OUTPUT TAPE 2,1210 C596
WRITE OUTPUT TAPE 2, 120U,LAPSED,ITERAT,LTEST 0597
WRITE OUTPUT TAPE ?,1000,(MODEL(I),I=1,MCDEND) 0598
GO TO 1 0599

C... 0600
C. THE PROBLEM IS INCONSISTENT. OUTPUT TC THE ON-LINE PRINTER AND . 0601
C. TAPE 2, ANC RETURN FCR NEXT PROBLEM. . 0602
C........«...............«..........................«..........«..*..... 060 3

750 LATER = MINUTE(X,Y,Z) 060U
LAPSED = LATER - NOW 0605
PRINT 1202, (LEADd) .1 = 1.LEADMX) 0606
PRINT 1203 0607
PRINT 120U, LAPSED 0608
WRITE OUTPUT TAPE 2.1207.(LEAD(I).I=1.LEADMX) 0609
WRITE OUTPUT TAPE 2.1203 0610

291 WRITE OUTPUT TAPE 2.120U.LAPSED,ITERAT,LTEST 0611
BACKSPACE 3 0612
READ TAPE 3. (MODEND,(MODEL(I).I=1.MODEND)) 0613
WRITE OUTPUT TAPE 2,1OOC.(MODEL(I).I=1."ODEND) 061U
GO TO 1 0615

0 0616
C. CAPACITY HAS BEEN EXCEEDED. OUTPUT RE"ARK TO ON-LINE PRINTER, AND . 0617
C RETURN FOR NEXT PROBLEM. . 0618
C............... 0619
1900 LATER = MINUTE(X,Y,Z) 0620

LAPSED = LATER - NOW 0621
PRINT 1202.(LEAD(I),1=1.LEADMX) 0622
PRINT 1205,LAPSED 0623
GO TO 1 062U

1000 FORMAT (701U) 0625
1001 FORMAT (5C1U) 0626
1002 FORMAT (7CIU) 0627
1003 FORMAT (701U) 0628
lODU FORMAT (6H025, , 8C1U) 0629
1005 FORMAT (6H0U6, , UI6) 0630
1006 FOR"AT (6H037, , It) 0631
1200 FOR"AT (1216) 0632
1201 FORMAT (12A6) 0633
1202 FORMAT (1H0, 19A6) 063U
1203 FORMAT (lUHOINCONSISTENT.) 0635
120U FORMAT (28H0TIME ELAPSED, IN MINUTES = , 3IU) 0636
1205 FORMAT (20H0FCRCED STOP AFTER , IU,31H MINUTES, WITH NO PRCCF FO 0637

0638
0639

1UND.)
1210 FORMAT (12H0C0NSISTENT.)
3001 FORMAT (iH0,i5) Xr^n
3997 FORMAT (8H0TF TEST) 0?r,

END (0,1,0,0,1) (,̂ 2̂

WGONNE NATIONAL LAB WEST

4 mom

